A comparative analysis of friction stir and tungsten inert gas dissimilar AA5082-AA7075 butt welds

Materials Science for Energy Technologies - Tập 5 - Trang 74-80 - 2022
Ratnesh Kumar1, Gaurav Kumar2, Abhijit Roy3, Ravi Shankar Sinha3, S.M. Mozammil Hasnain2, Om Prakash1, Asim Ahmad4
1Department of Mechanical Engineering, Birla Institute of Technology, Mesra, Ranchi 835215, India
2Department of Mechanical Engineering, KK University, Biharsharif 803115, India
3Department of Mechanical Engineering, Budge Budge Institute of Technology, Kolkata 700137, India
4Faculty of Engineering and Applied Sciences, Usha Martin University, Ranchi 835103, India

Tài liệu tham khảo

Sato, 2002, Parameters controlling microstructure and hardness during friction-stir welding of precipitation-hardenable aluminum alloy 6063, Metall. Mater. Trans. A, 33, 625, 10.1007/s11661-002-0124-3 Dey, 2019, Materials progress in the control of CO and CO2 emission at ambient conditions: An overview, Mater. Sci. Energy Technol., 2, 607 Rao, 2016, Fatigue and fracture of friction stir linear welded dissimilar aluminum-to-magnesium alloys, Int. J. Fatigue, 82, 737, 10.1016/j.ijfatigue.2015.09.033 Thomas, 1999, Feasibility of friction stir welding steel, Sci. Technol. Weld. Join., 4, 365, 10.1179/136217199101538012 Nandan, 2008, Recent advances in friction-stir welding - Process, weldment structure and properties, Prog. Mater Sci., 53, 980, 10.1016/j.pmatsci.2008.05.001 Mishra, 2005, Friction stir welding and processing, Mater. Sci. Eng. R Reports, 50, 1, 10.1016/j.mser.2005.07.001 Su, 2003, Microstructural investigation of friction stir welded 7050–T651 aluminium, Acta Mater., 51, 713, 10.1016/S1359-6454(02)00449-4 Thomas, 2003, Friction stir welding-recent developments in tool and process technologies, Adv. Eng. Mater., 5, 485, 10.1002/adem.200300355 Murr, 2010, A review of FSW research on dissimilar metal and alloy systems, J. Mater. Eng. Perform., 19, 1071, 10.1007/s11665-010-9598-0 Liu, 2018, A review of friction stir welding of steels: Tool, material flow, microstructure, and properties, J. Mater. Sci. Technol., 34, 39, 10.1016/j.jmst.2017.10.024 Xunhong, 2006, Microstructure and properties of friction stir butt-welded AZ31 magnesium alloy, Mater. Sci. Eng., A, 431, 114, 10.1016/j.msea.2006.05.128 Zhao, 2010, Comparative investigation of tungsten inert gas and friction stir welding characteristics of Al-Mg-Sc alloy plates, Mater. Des., 31, 306, 10.1016/j.matdes.2009.06.012 Cavaliere, 2009, Effect of welding parameters on mechanical and microstructural properties of dissimilar AA6082-AA2024 joints produced by friction stir welding, Mater. Des., 30, 609, 10.1016/j.matdes.2008.05.044 Crawford, 2006, Experimental defect analysis and force prediction simulation of high weld pitch friction stir welding, Sci. Technol. Weld. Join., 11, 657, 10.1179/174329306X147742 Ipekoǧlu, 2012, Investigation of the effect of temper condition on the friction-stir weldability of AA7075 Al-alloy plates, Mater. Tehnol., 46, 627 Bozkurt, 2013, Effect of welding parameters on lap shear tensile properties of dissimilar friction stir spot welded AA 5754–H22/2024-T3 joints, Sci. Technol. Weld. Join., 18, 337, 10.1179/1362171813Y.0000000111 Kim, 2006, Three defect types in friction stir welding of aluminum die casting alloy, Mater. Sci. Eng., A, 415, 250, 10.1016/j.msea.2005.09.072 Leal, 2004, Defects formation in friction stir welding of aluminium alloys, Mater. Sci. Forum, 455–456, 299, 10.4028/www.scientific.net/MSF.455-456.299 Venkateswarlu, 2013, Tool design effects for FSW of AA7039, Weld. J., 92 Lee, 2008, Lap joint properties of FSWed dissimilar formed 5052 Al and 6061 Al alloys with different thickness, J. Mater. Sci., 43, 3296, 10.1007/s10853-008-2525-1 Ericsson, 2003, Influence of welding speed on the fatigue of friction stir welds, and comparison with MIG and TIG, Int. J. Fatigue, 25, 1379, 10.1016/S0142-1123(03)00059-8 Padmanaban, 2009, Selection of FSW tool pin profile, shoulder diameter and material for joining AZ31B magnesium alloy - An experimental approach, Mater. Des., 30, 2647, 10.1016/j.matdes.2008.10.021 Said, 2020, Recent processes for the production of alumina nano-particles, Mater. Sci. Energy Technol., 3, 344 Infante, 2016, Study of the fatigue behaviour of dissimilar aluminium joints produced by friction stir welding, Int. J. Fatigue, 82, 310, 10.1016/j.ijfatigue.2015.06.020 Ceschini, 2007, Effect of friction stir welding on microstructure, tensile and fatigue properties of the AA7005/10 vol.%Al2O3p composite, Compos. Sci. Technol., 67, 605, 10.1016/j.compscitech.2006.07.029 Rao, 2017, Influence of the key-hole on fatigue life in friction stir linear welded aluminum to magnesium, Int. J. Fatigue, 105, 16, 10.1016/j.ijfatigue.2017.08.012 Rodriguez, 2016, Low-cycle fatigue of dissimilar friction stir welded aluminum alloys, Mater. Sci. Eng., A, 654, 236, 10.1016/j.msea.2015.11.075 Kumar, 2005, Review of the applicability of FSW processing to aircraft applications, Collect. Tech. Pap. - AIAA/ASME/ASCE/AHS/ASC Struct. Struct. Dyn. Mater. Conf., 4, 2483 Kumar, 2020, Optimization of process parameters of friction stir welded AA5082-AA7075 butt joints using resonance fatigue properties, Bull. Polish Acad. Sci. Tech. Sci., 68, 99 ASTM E8, “ASTM E8/E8M standard test methods for tension testing of metallic materials 1,” Annu. B. ASTM Stand. 4, no. C, pp. 1–27, 2010, 10.1520/E0008. A. E466-15, “Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials,” ASTM Int. West Conshohocken, PA, 2015, [Online]. Available: 10.1520/E0466-15.