A comparative analysis of corpora allata-corpora cardiaca microRNA repertoires revealed significant changes during mosquito metamorphosis

Insect Biochemistry and Molecular Biology - Tập 96 - Trang 10-18 - 2018
Marcela Nouzova1, Kayvan Etebari2, Fernando G. Noriega1,3, Sassan Asgari2
1Department of Biological Sciences, Florida International University, Miami FL 33199 USA
2Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Australia
3Biomolecular Science Institute, Florida International University, Miami, FL 33199, USA

Tài liệu tham khảo

Akbari, 2013, The developmental transcriptome of the mosquito Aedes aegypti, an invasive species and major arbovirus vector, G3, 3, 1493, 10.1534/g3.113.006742 Asgari, 2013, MicroRNA functions in insects, Insect Biochem. Mol. Biol., 43, 388, 10.1016/j.ibmb.2012.10.005 Ashby, 2016, MicroRNAs in honey bee caste determination, Sci. Rep., 6, 18794, 10.1038/srep18794 Bartel, 2004, MicroRNAs: genomics, biogenesis, mechanism, and function, Cell, 116, 281, 10.1016/S0092-8674(04)00045-5 Bartel, 2009, MicroRNAs: target recognition and regulatory functions, Cell, 23, 215, 10.1016/j.cell.2009.01.002 Belles, 2017, MicroRNAs and the evolution of insect metamorphosis, Annu. Rev. Entomol., 62, 111, 10.1146/annurev-ento-031616-034925 Bryant, 2010, microRNA miR-275 is indispensable for blood digestion and egg development in the mosquito Aedes aegypti, Proc. Natl. Acad. Sci. U.S.A., 107, 22391, 10.1073/pnas.1016230107 Burgess, 1966, The stomodaeal nervous system, the neurosecretory system, and the gland complex in Aedes aegypti (L.) (Diptera: Culicidae), Can. J. Zool., 44, 731, 10.1139/z66-070 Bushati, 2007, microRNA functions, Annu. Rev. Cell Dev. Biol., 23, 175, 10.1146/annurev.cellbio.23.090506.123406 Chawla, 2011, MicroRNAs in Drosophila development, Int Rev Cell Mol Biol, 286, 1, 10.1016/B978-0-12-385859-7.00001-X Clements, 1985, The cardiacal neurosecretory system and associated organs of an adult mosquito, Aedes aegypti, J. Insect Physiol., 31, 821, 10.1016/0022-1910(85)90075-7 Cohen, 2006, Denoising feedback loops by thresholding–a new role for microRNAs, Genes Dev., 20, 2769, 10.1101/gad.1484606 Cristino, 2010, Deep sequencing of organ- and stage-specific microRNAs in the evolutionarily basal insect Blattella germanica (L.) (Dictyoptera, Blattellidae), PLoS One, 6 Denzler, 2016, Impact of microRNA levels, target-site complementarity, and cooperativity on competing endogenous RNA-regulated gene expression, Mol. Cell, 64, 565, 10.1016/j.molcel.2016.09.027 Enright, 2003, MicroRNA targets in Drosophila, Genome Biol., 5, R1, 10.1186/gb-2003-5-1-r1 Ge, 2014, MicroRNA-100 promotes the autophagy of hepatocellular carcinoma cells by inhibiting the expression of mTOR and IGF-1R, Oncotarget, 5, 6218, 10.18632/oncotarget.2189 Goodman, 2012, The juvenile hormones, 310 Hu, 2015, MicroRNAs of two medically important mosquito species: Aedes aegypti and Anopheles stephensi, Insect Mol. Biol., 24, 240, 10.1111/imb.12152 Iovino, 2009, miR-184 has multiple roles in Drosophila female germline development, Dev. Cell, 17, 123, 10.1016/j.devcel.2009.06.008 Jagadeeswaran, 2010, Deep sequencing of small RNA libraries reveals dynamic regulation of conserved and novel microRNAs and microRNA-stars during silkworm development, BMC Genom., 11, 52, 10.1186/1471-2164-11-52 Jiang, 2013, MicroRNA-281 regulates the expression of ecdysone receptor (EcR) isoform B in the silkworm, Bombyx mori, Insect Biochem. Mol. Biol., 43, 692, 10.1016/j.ibmb.2013.05.002 Kozomara, 2014, miRBase: annotating high confidence microRNAs using deep sequencing data, Nucleic Acids Res., 42, D68, 10.1093/nar/gkt1181 Krueger, 2006, RNAhybrid: microRNA target prediction easy, fast and flexible, Nucleic Acids Res., 34, W451, 10.1093/nar/gkl243 Lampe, 2018, MicroRNA tissue atlas of the Malaria mosquito Anopheles gambiae, G3, 8, 185, 10.1534/g3.117.300170 Lee, 2017, Understanding the role of microRNAs in the interaction of Aedes aegypti mosquitoes with an insect-specific flavivirus, J. Gen. Virol., 98, 892, 10.1099/jgv.0.000832 Li, 2009, Direct sequencing and expression analysis of a large number of miRNAs in Aedes aegypti and a multi-species survey of novel mosquito miRNAs, BMC Genom., 10, 581, 10.1186/1471-2164-10-581 Li, 2003, Activity of the corpora allata of adult female Aedes aegypti: effects of mating and feeding, Insect Biochem. Mol. Biol., 33, 1307, 10.1016/j.ibmb.2003.07.003 Ling, 2014, MicroRNA Let-7 regulates molting and metamorphosis in the silkworm, Bombyx mori, Insect Biochem. Mol. Biol., 53, 13, 10.1016/j.ibmb.2014.06.011 Liu, 2010, MicroRNAs show diverse and dynamic expression patterns in multiple tissues of Bombyx mori, BMC Genom., 11, 85, 10.1186/1471-2164-11-85 Liu, 2014, Mosquito-specific microRNA-1174 targets serine hydroxymethyltransferase to control key functions in the gut, Proc. Natl. Acad. Sci. U.S.A., 111, 14460, 10.1073/pnas.1416278111 Liu, 2015, miR-184 and miR-150 promote renal glomerular mesangial cell aging by targeting Rab1a and Rab31, Exp. Cell Res., 336, 192, 10.1016/j.yexcr.2015.07.006 Lozano, 2015, MiR-2 family regulates insect metamorphosis by controlling the juvenile hormone signaling pathway, Proc. Natl. Acad. Sci. U. S. A., 112, 3740, 10.1073/pnas.1418522112 Lucas, 2013, Small RNAs: a new frontier in mosquito biology, Trends Parasitol., 29, 295, 10.1016/j.pt.2013.04.003 Lucas, 2015, MicroRNA-8 targets the Wingless signaling pathway in the female mosquito fat body to regulate reproductive processes, Proc. Natl. Acad. Sci. U.S.A., 112, 1440, 10.1073/pnas.1424408112 Lucas, 2015, Mosquito-specific microRNA-1890 targets the juvenile hormone-regulated serine protease JHA15 in the female mosquito gut, RNA Biol., 12, 1383, 10.1080/15476286.2015.1101525 Mane-Padros, 2010, The hormonal pathway controlling cell death during metamorphosis in a hemimetabolous insect, Dev. Biol., 346, 150, 10.1016/j.ydbio.2010.07.012 Mayoral, 2014, Wolbachia infection modifies the profile, shuttling and structure of microRNAs in a mosquito cell line, PLoS One, 9, 10.1371/journal.pone.0096107 Meola, 1972, The ultrastructure of the corpus cardiacum of Aedes sollicitans and the histology of the cerebral neurosecretory system of mosquitoes, Gen. Comp. Endocrinol., 18, 210, 10.1016/0016-6480(72)90208-0 Miesen, 2016, Small RNA profiling in dengue virus 2-infected Aedes mosquito cells reveals viral piRNAs and novel host miRNAs, PLoS Neglected Trop. Dis., 10, 10.1371/journal.pntd.0004452 Miranda, 2006, A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes, Cell, 126, 1203, 10.1016/j.cell.2006.07.031 Noriega, 2004, Nutritional regulation of JH synthesis: a mechanism to control reproductive maturation in mosquitoes?, Insect Biochem. Mol. Biol., 34, 687, 10.1016/j.ibmb.2004.03.021 Peng, 2015, miR-184 is Critical for the motility-related PNS development in Drosophila, Int. J. Dev. Neurosci., 46, 100, 10.1016/j.ijdevneu.2015.07.006 Predel, 2010, Neuropeptidomics of the mosquito Aedes aegypti, J. Proteome Res., 9, 2006, 10.1021/pr901187p Qu, 2017, MicroRNAs regulate the sesquiterpenoid hormonal pathway in Drosophila and other arthropods, Proc. Biol. Sci., 284, 10.1098/rspb.2017.1827 Ribeiro, 2007, An annotated catalogue of salivary gland transcripts in the adult female mosquito, Aedes aegypti, BMC Genom., 8, 6, 10.1186/1471-2164-8-6 Rivera-Perez, 2013, Aldehyde dehydrogenase 3 converts farnesal into farnesoic acid in the corpora allata of mosquitoes, Insect Biochem. Mol. Biol., 43, 675, 10.1016/j.ibmb.2013.04.002 Rivera-Perez, 2014, Metabolic analysis reveals changes in the mevalonate and juvenile hormone synthesis pathways linked to the mosquito reproductive physiology, Insect Biochem. Mol. Biol., 51, 1, 10.1016/j.ibmb.2014.05.001 Robinson, 2010, A scaling normalization method for differential expression analysis of RNA-seq data, Genome Biol., 11, R25, 10.1186/gb-2010-11-3-r25 Romer, 1998, Degeneration of moulting glands in male crickets, J. Insect Physiol., 44, 981, 10.1016/S0022-1910(98)00021-3 Rubio, 2013, Subtle roles of microRNAs let-7, miR-100 and miR-125 on wing morphogenesis in hemimetabolan metamorphosis, J. Insect Physiol., 59, 1089, 10.1016/j.jinsphys.2013.09.003 Rueda, 2015, sRNAtoolbox: an integrated collection of small RNA research tools, Nucleic Acids Res., 43, W467, 10.1093/nar/gkv555 Schoniger, 2013, Perspectives in targeting miRNA function, Bioorg. Med. Chem., 21, 6115, 10.1016/j.bmc.2013.03.040 Skalsky, 2010, Identification of microRNAs expressed in two mosquito vectors, Aedes albopictus and Culex quinquefasciatus, BMC Genom., 11, 119, 10.1186/1471-2164-11-119 Tatusov, 2000, The COG database: a tool for genome-scale analysis of protein functions and evolution, Nucleic Acids Res., 28, 33, 10.1093/nar/28.1.33 Tobe, 1985, Structure and regulation of the corpus allatum, 10.1016/S0065-2806(08)60043-0 van der Horst, 2010, Locust flight activity as a model for hormonal regulation of lipid mobilization and transport, J. Insect Physiol., 56, 844, 10.1016/j.jinsphys.2010.02.015 Varghese, 2007, microRNA miR-14 acts to modulate a positive autoregulatory loop controlling steroid hormone signaling in Drosophila, Genes Dev., 21, 2277, 10.1101/gad.439807 Varghese, 2011, Drosophila miR-14 regulates insulin production and metabolism through its target, sugarbabe, Genes Dev., 24, 2748, 10.1101/gad.1995910 Wei, 2009, Characterization and comparative profiling of the small RNA transcriptomes in two phases of locust, Genome Biol., 10, R6, 10.1186/gb-2009-10-1-r6 Xiong, 2016, miR-34 modulates innate immunity and ecdysone signaling in Drosophila, PLoS Pathog., 12, 10.1371/journal.ppat.1006034 Yang, 2016, MicroRNA-dependent roles of Drosha and Pasha in the Drosophila larval ovary morphogenesis, Dev. Biol., 416, 312, 10.1016/j.ydbio.2016.06.026 Zhai, 2013, MicroRNA: a third dimension in autophagy, Cell Cycle, 12, 246, 10.4161/cc.23273 Zhang, 2017, Transcriptome-wide microRNA and target dynamics in the fat body during the gonadotrophic cycle of Aedes aegypti, Proc. Natl. Acad. Sci. U. S. A., 114, E1895, 10.1073/pnas.1701474114 Zhang, 2016, microRNA-309 targets the Homeobox gene SIX4 and controls ovarian development in the mosquito Aedes aegypti, Proc. Natl. Acad. Sci. U. S. A., 113, E4828, 10.1073/pnas.1609792113 Zhu, 2016, The role of juvenile hormone in mosquito development and reproduction, 93, 10.1016/bs.aiip.2016.04.005 Zhuker, 1989, The use of dynamic programming algorithms in RNA secondary structure prediction, 159