A compactness theorem for the Seiberg–Witten equation with multiple spinors in dimension three

Geometric and Functional Analysis - Tập 25 - Trang 1799-1821 - 2015
Andriy Haydys1, Thomas Walpuski2
1Fakultät für Mathematik, Universität Bielefeld, Bielefeld, Germany
2Department of Mathematics, Massachusetts Institute of Technology, Cambridge, USA

Tóm tắt

We prove that a sequence of solutions of the Seiberg–Witten equation with multiple spinors in dimension three can degenerate only by converging (after rescaling) to a Fueter section of a bundle of moduli spaces of ASD instantons.

Tài liệu tham khảo

F. J. Almgren Jr. Dirichlet’s problem for multiple valued functions and the regularity of mass minimizing integral currents. Minimal submanifolds and geodesics. In: Proceedings of the Japan-United States Sem., Tokyo, 1977, (1979), pp. 1–6. Zbl0439.49028 C. Bär, P. Gauduchon, and A. Moroianu. Generalized cylinders in semi-Riemannian and spin geometry. Mathematische Zeitschrift (3)249 (2005), 545–580. Zbl1068.53030 W. Chen. Casson’s invariant and Seiberg–Witten gauge theory. Turkish Journal of Mathematics (1)21 (1997), 61–81. Zbl0891.57021 S.K. Donaldson and P.B. Kronheimer. The geometry of four-manifolds. In: Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, Oxford Science Publications, New York (1990). Zbl0904.57001 S.K. Donaldson and E.P. Segal. Gauge theory in higher dimensions, II. In: Surveys in Differential Geometry. Geometry of Special Holonomy and Related Topics, Vol. XVI. (2011), pp. 1–41. Zbl1256.53038 A. Haydys. Gauge theory, calibrated geometry and harmonic spinors. Journal of the London Mathematical Society (2)86 (2012), 482–498. (Zbl1256.81080) Q. Han, R. Hardt, and F.-H. Lin. Geometric measure of singular sets of elliptic equations. Communications on Pure and Applied Mathematics (11–12)51 (1998), 1425–1443. Zbl0940.35065 P.B. Kronheimer and T. Mrowka. Monopoles and three-manifolds. In: New Mathematical Monographs, Vol. 10. Cambridge University Press, Cambridge (2007). Zbl1158.57002 Y. Lim. Seiberg–Witten invariants for 3-manifolds in the case b1 = 0 or 1. Pacific Journal of Mathematics (1)195 (2000), 179–204. Zbl1015.57022 A. Naber and D. Valtorta, Volume estimates on the critical sets of solutions to elliptic PDEs (2014). http://arxiv.org/abs/1403.4176v1. C.H. Taubes. PSL(2;C) connections on 3-manifolds with L2 bounds on curvature. Cambridge Journal of Mathematics (2)1 (2013), 239–397 (Zbl06292859) C.H. Taubes. The zero loci of Z/2 harmonic spinors in dimension 2, 3 and 4 (2014). http://arxiv.org/abs/1407.6206. T. Walpuski. G2-instantons, associative submanifolds and Fueter sections (2012). http://arxiv.org/abs/1205.5350v1. T. Walpuski, Gauge theory on G2-manifolds, Ph.D. Thesis (2013). https://spiral.imperial.ac.uk/bitstream/10044/1/14365/1/Walpuski-T-2013-PhD-Thesis.