A combined strategy for quantitative trait loci detection by genome-wide association
Tóm tắt
We applied a range of genome-wide association (GWA) methods to map quantitative trait loci (QTL) in the simulated dataset provided by the 12th QTLMAS workshop in order to derive an effective strategy. A variance component linkage analysis revealed QTLs but with low resolution. Three single-marker based GWA methods were then applied: Transmission Disequilibrium Test and single marker regression, fitting an additive model or a genotype model, on phenotypes pre-corrected for pedigree and fixed effects. These methods detected QTL positions with high concordance to each other and with greater refinement of the linkage signals. Further multiple-marker and haplotype analyses confirmed the results with higher significance. Two-locus interaction analysis detected two epistatic pairs of markers that were not significant by marginal effects. Overall, using stringent Bonferroni thresholds we identified 9 additive QTL and 2 epistatic interactions, which together explained about 12.3% of the corrected phenotypic variance. The combination of methods that are robust against population stratification, like QTDT, with flexible linear models that take account of the family structure provided consistent results. Extensive simulations are still required to determine appropriate thresholds for more advanced model including epistasis.
Tài liệu tham khảo
Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007, 447: 661-678. 10.1038/nature05911.
Aulchenko YS, de Koning DJ, Haley C: Genomewide rapid association using mixed model and regression: A fast and simple method for genomewide pedigree-based quantitative trait loci association analysis. Genetics. 2007, 177: 577-585. 10.1534/genetics.107.075614.
Barrett JC, Fry B, Maller J, Daly MJ: Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005, 21: 263-265. 10.1093/bioinformatics/bth457.
Lynch M, Walsh B: Genetics and Analysis of Quantitative Traits. 1998, Sinauer Associates, Inc
Abecasis GR, Cardon LR, Cookson WO: A general test of association for quantitative traits in nuclear families. Am J Hum Genet. 2000, 66: 279-292. 10.1086/302698.
Gilmour A, Cullis B, Welham S, Thompson R: ASREML User's Manual. 1998, New South Wales Agricultural Institute, Orange, NSW, Australia, Ref Type: Computer Program
Sinwell JP, Schaid DJ, Rowland CM, Yu Z: haplo.stats: Statistical Analysis of Haplotypes with Traits and Covariates when Linkage Phase is Ambiguous. R package version 1.3.4. 2008, Ref Type: Computer Program, [http://mayoresearch.mayo.edu/mayo/research/schaid_lab/software.cfm]
Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA: Score tests for association between traits and haplotypes when linkage phase is ambiguous. Am J Hum Genet. 2002, 70: 425-434. 10.1086/338688.
Kooperberg C, Leblanc M: Increasing the power of identifying gene × gene interactions in genome-wide association studies. Genet Epidemiol. 2008, 32: 255-263. 10.1002/gepi.20300.