A combined forecasting method for intermittent demand using the automotive aftermarket data

Data Science and Management - Tập 5 - Trang 43-56 - 2022
Xiaotian Zhuang1, Ying Yu1,2, Aihui Chen2,3
1Department of Intelligent Supply Chain, Jingdong Zhenshi Information Technology Co., Ltd., Beijing, 100176, China
2College of Management and Economics, Tianjin University, Tianjin 300072, China
3Qingdao Institute for Ocean Engineering of Tianjin University, Qingdao, 266207, China

Tài liệu tham khảo

Altay, 2008, Adapting wright’s modification of holt’s method to forecasting intermittent demand, Int. J. Prod. Econ., 111, 389, 10.1016/j.ijpe.2007.01.009 Babai, 2020, On the empirical performance of some new neural network methods for forecasting intermittent demand, IMA J. Manag. Math., 31, 281, 10.1093/imaman/dpaa003 Bandara, 2020, Forecasting across time series databases using recurrent neural networks on groups of similar series: a clustering approach, Expert Syst. Appl., 140, 112896.1 Boylan, 1996, Variance laws for inventory management, Int. J. Prod. Econ., 45, 343, 10.1016/0925-5273(95)00151-4 Bozos, 2011, Forecasting the value effect of seasoned equity offering announcements, Eur. J. Oper. Res., 214, 418, 10.1016/j.ejor.2011.04.007 Bradley, 1997, The use of the area under the roc curve in the evaluation of machine learning algorithms, Pattern Recogn., 30, 1145, 10.1016/S0031-3203(96)00142-2 Chen, 2016, XGBoost: a scalable tree boosting system Croston, 1972, Forecasting and stock control for intermittent demands, Oper. Res. Q., 23, 289, 10.1057/jors.1972.50 Dai, 2007, Boosting for transfer learning Dai, 2009, Eigen transfer: a unified framework for transfer learning Deng, 2016, An improved method to construct basic probability assignment based on the confusion matrix for classification problem, Inf. Sci., 340–341, 250, 10.1016/j.ins.2016.01.033 Eaves, 2017, Forecasting for the ordering and stock-holding of spare parts, J. Oper. Res. Soc., 55, 431, 10.1057/palgrave.jors.2601697 Fan, 2021, Machine learning-based prediction models for patients no-show in online outpatient appointments, Data Sci. Manag., 2, 45, 10.1016/j.dsm.2021.06.002 Flach, 2003, The geometry of ROC space: understanding machine learning metrics through ROC isometrics, 194 Freund, 1997, A decision-theoretic generalization of on-line learning and an application to boosting, J. Comput. Syst. Sci., 55, 119, 10.1006/jcss.1997.1504 Friedman, 2001, Greedy function approximation: a gradient boosting machine, Ann. Stat., 29, 1189, 10.1214/aos/1013203451 Ghobbar, 2002, Sources of intermittent demand for aircraft spare parts within airline operations, J. Air Transport. Manag., 8, 221, 10.1016/S0969-6997(01)00054-0 Ghobbar, 2003, Evaluation of forecasting methods for intermittent parts demand in the field of aviation: a predictive model, Comput. Oper. Res., 30, 2097, 10.1016/S0305-0548(02)00125-9 Gutierrez, 2008, Lumpy demand forecasting using neural networks, Int. J. Prod. Econ., 111, 409, 10.1016/j.ijpe.2007.01.007 Hasni, 2019, On the performance of adjusted bootstrapping methods for intermittent demand forecasting, Int. J. Prod. Econ., 216, 145, 10.1016/j.ijpe.2019.04.005 Hasni, 2019, Spare parts demand forecasting: a review on bootstrapping methods, Int. J. Prod. Res., 57, 4791, 10.1080/00207543.2018.1424375 Hua, 2006, A hybrid support vector machines and logistic regression approach for forecasting intermittent demand of spare parts, Appl. Math. Comput., 181, 1035 Hua, 2007, A new approach of forecasting intermittent demand for spare parts inventories in the process industries, J. Oper. Res. Soc., 58, 52, 10.1057/palgrave.jors.2602119 Hyndman, 2006, Another look at forecast accuracy metrics for intermittent demand, Foresight: Int. J. Appl. Forecast., 4, 43 Jiang, 2007, Instance weighting for domain adaptation in NLP Jiang, 2020, A new approach to forecasting intermittent demand based on the mixed zero-truncated Poisson model, J. Forecast., 39, 69, 10.1002/for.2614 Ke, 2017, LightGBM: a highly efficient gradient boosting decision tree, 3149 Knod, 2001 Kolassa, 2016, Evaluating predictive count data distributions in retail sales forecasting, Int. J. Forecast., 32, 788, 10.1016/j.ijforecast.2015.12.004 Kourentzes, 2013, Intermittent demand forecasts with neural networks, Int. J. Prod. Econ., 143, 198, 10.1016/j.ijpe.2013.01.009 Levén, 2004, Inventory control with a modified croston procedure and erlang distribution, Int. J. Prod. Econ., 90, 361, 10.1016/S0925-5273(03)00053-7 Liao, 2005, Logistic regression with an auxiliary data source Ma, 2017, A retail store SKU promotions optimization model for category multi-period profit maximization, Eur. J. Oper. Res., 260, 680, 10.1016/j.ejor.2016.12.032 Makridakis, 2020, The M5 uncertainty competition: results, findings and conclusions, Int. J. Forecast., 36, 224, 10.1016/j.ijforecast.2019.05.006 Nikolopoulos, 2019 Nikolopoulos, 2007, Forecasting with cue information: a comparison of multiple regression with alternative forecasting approaches, Eur. J. Oper. Res., 180, 354, 10.1016/j.ejor.2006.03.047 Nikolopoulos, 2011, An aggregate-disaggregate intermittent demand approach (adida) to forecasting: an empirical proposition and analysis, J. Oper. Res. Soc., 62, 544, 10.1057/jors.2010.32 Nikolopoulos, 2016, Forecasting supply chain sporadic demand with nearest neighbor approaches, Int. J. Prod. Econ., 177, 139, 10.1016/j.ijpe.2016.04.013 Pardoe, 2010, Boosting for regression transfer, 863 Patton, 2003 Petropoulos, 2014, Horses for courses’ in demand forecasting, Eur. J. Oper. Res., 237, 152, 10.1016/j.ejor.2014.02.036 Pour, 2008, A hybrid neural network and traditional approach for forecasting lumpy demand, 1028 Regattieri, 2005, Managing lumpy demand for aircraft spare parts, J. Air Transport. Manag., 11, 426, 10.1016/j.jairtraman.2005.06.003 Rego, 2015, Demand forecasting and inventory control: a simulation study on automotive spare parts, Int. J. Prod. Econ., 161, 1, 10.1016/j.ijpe.2014.11.009 Roanec, 2021 Rosenstein, 2005, To transfer or not to transfer Salinas, 2020, DeepAR: probabilistic forecasting with autoregressive recurrent networks, Int. J. Forecast., 36, 1181, 10.1016/j.ijforecast.2019.07.001 Shenstone, 2005, Stochastic models underlying Croston’s method for intermittent demand forecasting, J. Forecast., 24, 389, 10.1002/for.963 Sungil, 2016, A new metric of absolute percentage error for intermittent demand forecasts, Int. J. Forecast., 32, 669, 10.1016/j.ijforecast.2015.12.003 Swain, 1980, Data analysis and the design of automatic forecasting systems Swets, 2014 Syntetos, 2001 Syntetos, 2001, On the bias of intermittent demand estimates, Int. J. Prod. Econ., 71, 457, 10.1016/S0925-5273(00)00143-2 Syntetos, 2005, The accuracy of intermittent demand estimates, Int. J. Forecast., 21, 303, 10.1016/j.ijforecast.2004.10.001 Syntetos, 2005, On the categorization of demand patterns, J. Oper. Res. Soc., 56, 495, 10.1057/palgrave.jors.2601841 Syntetos, 2009, Demand categorisation in a European spare parts logistics network, Int. J. Oper. Prod. Manag., 29, 292, 10.1108/01443570910939005 Syntetos, 2010, Forecasting and stock control: a study in a wholesaling context, Int. J. Prod. Econ., 127, 103, 10.1016/j.ijpe.2010.05.001 Syntetos, 2016, Supply chain forecasting: theory, practice, their gap and the future, Eur. J. Oper. Res., 252, 1, 10.1016/j.ejor.2015.11.010 Tavares, 1983, A binary decision model for the stock control of very slow moving items, J. Oper. Res. Soc., 34, 249, 10.1057/jors.1983.53 Teunter, 2009, Forecasting intermittent demand: a comparative study, J. Oper. Res. Soc., 60, 321, 10.1057/palgrave.jors.2602569 Thrun, 1998 Verganti, 1997, Order overplanning with uncertain lumpy demand: a simplified theory, Int. J. Prod. Res., 35, 3229, 10.1080/002075497194057 Viswanathan, 2008 Watson, 1987, The effects of demand-forecast fluctuations on customer service and inventory cost when demand is lumpy, J. Oper. Res. Soc., 38, 75, 10.1057/jors.1987.9 Weng, 2008, New evaluation measure for imbalanced datasets, 27 Willemain, 2004, A new approach to forecasting intermittent demand for service parts inventories, Int. J. Forecast., 20, 375, 10.1016/S0169-2070(03)00013-X Williams, 1984, Stock control with sporadic and slow-moving demand, J. Oper. Res. Soc., 35, 939, 10.1057/jors.1984.185 Wingerden, 2014, More grip on inventory control through improved forecasting: a comparative study at three companies, Int. J. Prod. Econ., 157, 220, 10.1016/j.ijpe.2014.08.018 Wu, 2004, Improving SVM accuracy by training on auxiliary data sources, 871 Yang, 2006, 10 challenging problems in data mining research, Int. J. Inf. Technol. Decis. Making, 5, 597, 10.1142/S0219622006002258 Yang, 2021, Tourism demand forecasting and tourists’ search behavior: evidence from segmented Baidu search volume, Data Sci. Manag., 4, 1, 10.1016/j.dsm.2021.10.002 Zhou, 2011, Comparison of a new bootstrapping method with parametric approaches for safety stock determi-nation in service parts inventory systems, Int. J. Prod. Econ., 133, 481, 10.1016/j.ijpe.2010.09.021 Zotteri, 2000, The impact of distributions of uncertain lumpy demand on inventories, Prod. Plann. Control, 11, 32, 10.1080/095372800232469