A combined forecasting method for intermittent demand using the automotive aftermarket data
Tài liệu tham khảo
Altay, 2008, Adapting wright’s modification of holt’s method to forecasting intermittent demand, Int. J. Prod. Econ., 111, 389, 10.1016/j.ijpe.2007.01.009
Babai, 2020, On the empirical performance of some new neural network methods for forecasting intermittent demand, IMA J. Manag. Math., 31, 281, 10.1093/imaman/dpaa003
Bandara, 2020, Forecasting across time series databases using recurrent neural networks on groups of similar series: a clustering approach, Expert Syst. Appl., 140, 112896.1
Boylan, 1996, Variance laws for inventory management, Int. J. Prod. Econ., 45, 343, 10.1016/0925-5273(95)00151-4
Bozos, 2011, Forecasting the value effect of seasoned equity offering announcements, Eur. J. Oper. Res., 214, 418, 10.1016/j.ejor.2011.04.007
Bradley, 1997, The use of the area under the roc curve in the evaluation of machine learning algorithms, Pattern Recogn., 30, 1145, 10.1016/S0031-3203(96)00142-2
Chen, 2016, XGBoost: a scalable tree boosting system
Croston, 1972, Forecasting and stock control for intermittent demands, Oper. Res. Q., 23, 289, 10.1057/jors.1972.50
Dai, 2007, Boosting for transfer learning
Dai, 2009, Eigen transfer: a unified framework for transfer learning
Deng, 2016, An improved method to construct basic probability assignment based on the confusion matrix for classification problem, Inf. Sci., 340–341, 250, 10.1016/j.ins.2016.01.033
Eaves, 2017, Forecasting for the ordering and stock-holding of spare parts, J. Oper. Res. Soc., 55, 431, 10.1057/palgrave.jors.2601697
Fan, 2021, Machine learning-based prediction models for patients no-show in online outpatient appointments, Data Sci. Manag., 2, 45, 10.1016/j.dsm.2021.06.002
Flach, 2003, The geometry of ROC space: understanding machine learning metrics through ROC isometrics, 194
Freund, 1997, A decision-theoretic generalization of on-line learning and an application to boosting, J. Comput. Syst. Sci., 55, 119, 10.1006/jcss.1997.1504
Friedman, 2001, Greedy function approximation: a gradient boosting machine, Ann. Stat., 29, 1189, 10.1214/aos/1013203451
Ghobbar, 2002, Sources of intermittent demand for aircraft spare parts within airline operations, J. Air Transport. Manag., 8, 221, 10.1016/S0969-6997(01)00054-0
Ghobbar, 2003, Evaluation of forecasting methods for intermittent parts demand in the field of aviation: a predictive model, Comput. Oper. Res., 30, 2097, 10.1016/S0305-0548(02)00125-9
Gutierrez, 2008, Lumpy demand forecasting using neural networks, Int. J. Prod. Econ., 111, 409, 10.1016/j.ijpe.2007.01.007
Hasni, 2019, On the performance of adjusted bootstrapping methods for intermittent demand forecasting, Int. J. Prod. Econ., 216, 145, 10.1016/j.ijpe.2019.04.005
Hasni, 2019, Spare parts demand forecasting: a review on bootstrapping methods, Int. J. Prod. Res., 57, 4791, 10.1080/00207543.2018.1424375
Hua, 2006, A hybrid support vector machines and logistic regression approach for forecasting intermittent demand of spare parts, Appl. Math. Comput., 181, 1035
Hua, 2007, A new approach of forecasting intermittent demand for spare parts inventories in the process industries, J. Oper. Res. Soc., 58, 52, 10.1057/palgrave.jors.2602119
Hyndman, 2006, Another look at forecast accuracy metrics for intermittent demand, Foresight: Int. J. Appl. Forecast., 4, 43
Jiang, 2007, Instance weighting for domain adaptation in NLP
Jiang, 2020, A new approach to forecasting intermittent demand based on the mixed zero-truncated Poisson model, J. Forecast., 39, 69, 10.1002/for.2614
Ke, 2017, LightGBM: a highly efficient gradient boosting decision tree, 3149
Knod, 2001
Kolassa, 2016, Evaluating predictive count data distributions in retail sales forecasting, Int. J. Forecast., 32, 788, 10.1016/j.ijforecast.2015.12.004
Kourentzes, 2013, Intermittent demand forecasts with neural networks, Int. J. Prod. Econ., 143, 198, 10.1016/j.ijpe.2013.01.009
Levén, 2004, Inventory control with a modified croston procedure and erlang distribution, Int. J. Prod. Econ., 90, 361, 10.1016/S0925-5273(03)00053-7
Liao, 2005, Logistic regression with an auxiliary data source
Ma, 2017, A retail store SKU promotions optimization model for category multi-period profit maximization, Eur. J. Oper. Res., 260, 680, 10.1016/j.ejor.2016.12.032
Makridakis, 2020, The M5 uncertainty competition: results, findings and conclusions, Int. J. Forecast., 36, 224, 10.1016/j.ijforecast.2019.05.006
Nikolopoulos, 2019
Nikolopoulos, 2007, Forecasting with cue information: a comparison of multiple regression with alternative forecasting approaches, Eur. J. Oper. Res., 180, 354, 10.1016/j.ejor.2006.03.047
Nikolopoulos, 2011, An aggregate-disaggregate intermittent demand approach (adida) to forecasting: an empirical proposition and analysis, J. Oper. Res. Soc., 62, 544, 10.1057/jors.2010.32
Nikolopoulos, 2016, Forecasting supply chain sporadic demand with nearest neighbor approaches, Int. J. Prod. Econ., 177, 139, 10.1016/j.ijpe.2016.04.013
Pardoe, 2010, Boosting for regression transfer, 863
Patton, 2003
Petropoulos, 2014, Horses for courses’ in demand forecasting, Eur. J. Oper. Res., 237, 152, 10.1016/j.ejor.2014.02.036
Pour, 2008, A hybrid neural network and traditional approach for forecasting lumpy demand, 1028
Regattieri, 2005, Managing lumpy demand for aircraft spare parts, J. Air Transport. Manag., 11, 426, 10.1016/j.jairtraman.2005.06.003
Rego, 2015, Demand forecasting and inventory control: a simulation study on automotive spare parts, Int. J. Prod. Econ., 161, 1, 10.1016/j.ijpe.2014.11.009
Roanec, 2021
Rosenstein, 2005, To transfer or not to transfer
Salinas, 2020, DeepAR: probabilistic forecasting with autoregressive recurrent networks, Int. J. Forecast., 36, 1181, 10.1016/j.ijforecast.2019.07.001
Shenstone, 2005, Stochastic models underlying Croston’s method for intermittent demand forecasting, J. Forecast., 24, 389, 10.1002/for.963
Sungil, 2016, A new metric of absolute percentage error for intermittent demand forecasts, Int. J. Forecast., 32, 669, 10.1016/j.ijforecast.2015.12.003
Swain, 1980, Data analysis and the design of automatic forecasting systems
Swets, 2014
Syntetos, 2001
Syntetos, 2001, On the bias of intermittent demand estimates, Int. J. Prod. Econ., 71, 457, 10.1016/S0925-5273(00)00143-2
Syntetos, 2005, The accuracy of intermittent demand estimates, Int. J. Forecast., 21, 303, 10.1016/j.ijforecast.2004.10.001
Syntetos, 2005, On the categorization of demand patterns, J. Oper. Res. Soc., 56, 495, 10.1057/palgrave.jors.2601841
Syntetos, 2009, Demand categorisation in a European spare parts logistics network, Int. J. Oper. Prod. Manag., 29, 292, 10.1108/01443570910939005
Syntetos, 2010, Forecasting and stock control: a study in a wholesaling context, Int. J. Prod. Econ., 127, 103, 10.1016/j.ijpe.2010.05.001
Syntetos, 2016, Supply chain forecasting: theory, practice, their gap and the future, Eur. J. Oper. Res., 252, 1, 10.1016/j.ejor.2015.11.010
Tavares, 1983, A binary decision model for the stock control of very slow moving items, J. Oper. Res. Soc., 34, 249, 10.1057/jors.1983.53
Teunter, 2009, Forecasting intermittent demand: a comparative study, J. Oper. Res. Soc., 60, 321, 10.1057/palgrave.jors.2602569
Thrun, 1998
Verganti, 1997, Order overplanning with uncertain lumpy demand: a simplified theory, Int. J. Prod. Res., 35, 3229, 10.1080/002075497194057
Viswanathan, 2008
Watson, 1987, The effects of demand-forecast fluctuations on customer service and inventory cost when demand is lumpy, J. Oper. Res. Soc., 38, 75, 10.1057/jors.1987.9
Weng, 2008, New evaluation measure for imbalanced datasets, 27
Willemain, 2004, A new approach to forecasting intermittent demand for service parts inventories, Int. J. Forecast., 20, 375, 10.1016/S0169-2070(03)00013-X
Williams, 1984, Stock control with sporadic and slow-moving demand, J. Oper. Res. Soc., 35, 939, 10.1057/jors.1984.185
Wingerden, 2014, More grip on inventory control through improved forecasting: a comparative study at three companies, Int. J. Prod. Econ., 157, 220, 10.1016/j.ijpe.2014.08.018
Wu, 2004, Improving SVM accuracy by training on auxiliary data sources, 871
Yang, 2006, 10 challenging problems in data mining research, Int. J. Inf. Technol. Decis. Making, 5, 597, 10.1142/S0219622006002258
Yang, 2021, Tourism demand forecasting and tourists’ search behavior: evidence from segmented Baidu search volume, Data Sci. Manag., 4, 1, 10.1016/j.dsm.2021.10.002
Zhou, 2011, Comparison of a new bootstrapping method with parametric approaches for safety stock determi-nation in service parts inventory systems, Int. J. Prod. Econ., 133, 481, 10.1016/j.ijpe.2010.09.021
Zotteri, 2000, The impact of distributions of uncertain lumpy demand on inventories, Prod. Plann. Control, 11, 32, 10.1080/095372800232469