A combinatorial calculation of the Landau–Ginzburg model $$M={\mathbb {C}}^{3},W=z_1 z_2 z_3$$

Selecta Mathematica - Tập 23 - Trang 519-532 - 2016
David Nadler1
1Department of Mathematics, University of California, Berkeley, Berkeley, USA

Tóm tắt

The aim of this paper is to apply ideas from the study of Legendrian singularities to a specific example of interest within mirror symmetry. We calculate the Landau–Ginzburg A-model with $$M={\mathbb {C}}^{3},W=z_1 z_2 z_3$$ in its guise as microlocal sheaves along the natural singular Lagrangian thimble $$L={\hbox {Cone}}(T^2)\subset M$$ . The description we obtain is immediately equivalent to the B-model of the pair-of-pants $$\mathbb {P}^{1}{\setminus }\{0,1,\infty \}$$ as predicted by mirror symmetry.

Tài liệu tham khảo

Abouzaid, M., Auroux, D.: Homological mirror symmetry for hypersurfaces in \(({\mathbb{C}}^*)^n\). in preparation Abouzaid, M., Auroux, D., Efimov, A.I., Katzarkov, L., Orlov, D.: Homological mirror symmetry for punctured spheres. J. Am. Math. Soc. 26, 1051–1083 (2013) Abouzaid, M., Seidel, P.: An open string analogue of Viterbo functoriality. Geom. Topol. 14, 627–718 (2010) Auroux, D.: Fukaya categories and bordered Heegaard–Floer homology. In: Proceedings of the International Congress of Mathematicians (Hyderabad, 2010), Vol. II, pp. 917–941. Hindustan Book Agency (2010) Ben-Zvi, D., Nadler, D., Preygel, A.: Integral transforms for coherent sheaves. arXiv:1312.7164 Bernstein, J.: Algebraic theory of \({\cal D}\)-modules. http://www.math.uchicago.edu/~mitya/langlands/Bernstein/Bernstein-dmod.ps. Accessed 28 July 2016 Kashiwara, M.: Faisceaux constructibles et systèmes holonômes d’équations aux dérivées partielles linéaires à points singuliers réguliers. In: Séminaire Goulaouic–Schwartz, 1979–80, Exposé 19. École Polytechnique, Palaiseau Kashiwara, M.: The Riemann-Hilbert problem for holonomic systems. Publ. Res. Ins. Math. Sci. 20(2), 319–365 (1984) Mebkhout, Z.: Sur le probléme de Hilbert–Riemann. In: Complex Analysis, Microlocal Calculus and Relativistic Quantum Theory (Les Houches, 1979), Lecture Notes in Physics 126, pp. 90–110. Springer Mebkhout, Z.: Une autre équivalence de catégories. Compos. Math. 51(1), 63–88 (1984) Kashiwara, M., Schapira, P.: Sheaves on manifolds. Grundlehren der Mathematischen Wissenschaften 292. Springer, Berlin (1994) Nadler, D.: Cyclic symmetries of \(A_n\)-quiver representations. Adv. Math. 269, 346–363 (2015) Nadler, D.: Arboreal singularities. To appear in Geom. Topol. arXiv:1309.4122 Nadler, D.: Non-characteristic expansions of Legendrian singularities. arXiv:1507.01513 Nadler, D.: Mirror symmetry for the Landau-Ginzburg A-model \(M={\mathbb{C}}^{n}, W=z_{1}\cdots z_{n}\). arXiv:1601.02977 Nadler, D.: Wrapped microlocal sheaves on pairs of pants. arXiv:1604.00114 Seidel, P.: Fukaya categories and Picard–Lefschetz theory. In: Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich (2008) Treumann, D., Zaslow, E.: Polytopes and Skeleta. arXiv:1109.4430