A combination of energy method and spectral analysis for study of equations of gas motion

Renjun Duan1, Seiji Ukai2, Tong Yang3
1Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, Linz, Austria
2Liu Bie Ju Centre for Mathematical Sciences, City University of Hong Kong, Hong Kong, China
3Department of Mathematics, City University of Hong Kong, Hong Kong, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Deckelnick K. Decay estimates for the compressible Navier-Stokes equations in unbounded domains. Math Z, 1992, 209:115–130

Deckelnick K. L 2-decay for the compressible Navier-Stokes equations in unbounded domains. Comm Partial Differential Equations, 1993, 18:1445–1476

Desvillettes L, Villani C. On the trend to global equilibrium for spatially inhomogeneous kinetic systems: The Boltzmann equation. Invent Math, 2005, 159(2):245–316

Duan R-J. The Boltzmann equation near equilibrium states in ℝn. Methods and Applications of Analysis, 2007, 14(3):227–250

Duan R-J. On the Cauchy problem for the Boltzmann equation in the whole space: Global existence and uniform stability in L ξ 2 (H x N ). Journal of Differential Equations, 2008, 244:3204–3234

Duan R-J. Some Mathematical Theories on the Gas Motion under the Influence of External Forcing. Ph D Thesis. Hong Kong: City University of Hong Kong, 2008

Duan R-J, Liu H-X, Ukai S, Yang T. Optimal L p-L q convergence rates for the Navier-Stokes equations with potential force. Journal of Differential Equations, 2007, 238:220–233

Duan R-J, Ukai S, Yang T, Zhao H-J. Optimal decay estimates on the linearized Boltzmann equation with time dependent force and their applications. Comm Math Phys, 2008, 277:189–236

Duan R-J, Yang T, Zhu C-J. Navier-Stokes equations with degenerate viscosity, vacuum and gravitational force. Mathematical Methods in the Applied Sciences, 2007, 30:347–374

Guo Y. The Boltzmann equation in the whole space. Indiana Univ Math J, 2004, 53:1081–1094

Guo Y. Boltzmann diffusive limit beyond the Navier-Stokes approximation. Comm Pure Appl Math, 2006, 59:626–687

Hoff D, Zumbrun K. Pointwise decay estimates for multidimensional Navier-Stokes diffusion waves. Z angew Math Phys, 1997, 48:597–614

Kawashima S. Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics. Thesis. Kyoto: Kyoto University, 1983

Kobayashi T. Some estimates of solutions for the equations of motion of compressible viscous fluid in an exterior domain in ℝ3. J Differential Equations, 2002, 184:587–619

Kobayashi T, Shibata Y. Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in ℝ3. Commun Math Phys, 1999, 200:621–659

Ladyzhenskaya O A. The Mathematical Theory of Viscous Incompressible Flow. 2nd English Ed (revised and enlarged). New York-London-Paris: Science Publishers, 1969, 1–224

Liu T-P, Wang W-K. The pointwise estimates of diffusion waves for the Navier-Stokes equations in odd multi-dimensions. Commun Math Phys, 1998, 196:145–173

Liu T-P, Yang T, Yu S-H. Energy method for the Boltzmann equation. Physica D, 2004, 188(3–4):178–192

Liu T-P, Yu S-H. Boltzmann equation: Micro-macro decompositions and positivity of shock profiles. Commun Math Phys, 2004, 246(1):133–179

Liu T-P, Yu S-H. Diffusion under gravitational and boundary effects. Bull Inst Math Acad Sin (N S), 2008, 3:167–210

Matsumura A, Nishida T. The initial value problems for the equations of motion of viscous and heat-conductive gases. J Math Kyoto Univ, 1980, 20:67–104

Matsumura A, Yamagata N. Global weak solutions of the Navier-Stokes equations for multidimensional compressible flow subject to large external potential forces. Osaka J Math, 2001, 38(2):399–418

Nishida T, Imai K. Global solutions to the initial value problem for the nonlinear Boltzmann equation. Publ Res Inst Math Sci, 1976/77, 12:229–239

Ponce G. Global existence of small solutions to a class of nonlinear evolution equations. Nonlinear Anal, 1985, 9:339–418

Shibata Y, Tanaka K. Rate of convergence of non-stationary flow to the steady flow of compressible viscous fluid. Comput Math Appl, 2007, 53:605–623

Shizuta Y. On the classical solutions of the Boltzmann equation. Commun Pure Appl Math, 1983, 36:705–754

Strain R M. The Vlasov-Maxwell-Boltzmann system in the whole space. Commun Math Phys, 2006, 268(2):543–567

Strain R M, Guo Y. Almost exponential decay near Maxwellian. Communications in Partial Differential Equations, 2006, 31:417–429

Ukai S. On the existence of global solutions of mixed problem for non-linear Boltzmann equation. Proceedings of the Japan Academy, 1974, 50:179–184

Ukai S. Les solutions globales de l’’equation de Boltzmann dans l’espace tout entier et dans le demi-espace. C R Acad Sci Paris, 1976, 282A(6):317–320

Ukai S, Yang T. The Boltzmann equation in the space L 2 ∩ L β ∞ : Global and timeperiodic solutions. Analysis and Applications, 2006, 4: 263–310

Ukai S, Yang T, Zhao H-J. Global solutions to the Boltzmann equation with external forces. Analysis and Applications, 2005, 3(2):157–193

Ukai S, Yang T, Zhao H-J. Convergence rate for the compressible Navier-Stokes equations with external force. J Hyperbolic Diff Equations, 2006, 3:561–574

Ukai S, Yang T, Zhao H-J. Convergence rate to stationary solutions for Boltzmann equation with external force. Chinese Ann Math, Ser B, 2006, 27:363–378

Yang T, Zhao H-J. A new energy method for the Boltzmann equation. Journal of Mathematical Physics, 2006, 47:053301