A collocation method using Hermite polynomials for approximate solution of pantograph equations

Journal of the Franklin Institute - Tập 348 Số 6 - Trang 1128-1139 - 2011
Salih Yalçınbaş1, Müge Aynigül1, Mehmet Sezer2
1Department of Mathematics, Faculty of Science, Celal Bayar University, Manisa, Turkey
2Department of Mathematics, Faculty of Science, Muğla University, Muğla, Turkey

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ockendon, 1971, The dynamics of a current collection system for an electric locomotive, Proc. Roy. Soc. London A, 322, 447, 10.1098/rspa.1971.0078

Derfel, 1996, On the asymptotics of solutions of a class of linear functional–differential equations, Eur., J. Appl. Math., 7, 511

G.R. Morris, A. Feldstein, E.W. Bowen, The Phragmen–Lindel' of principle and a class of functional–differential equations, in: Proceedings of the NRL–MRC Conference on Ordinary Differential Equations, 1972, pp. 513–540.

Derfel, 1997, The pantograph equation in the complex plane, J. Math. Anal. Appl., 213, 117, 10.1006/jmaa.1997.5483

Derfel, 1980, On compactly supported solutions of a class of functional–differential equations

Derfel, 1995, Generalized refinement equation and subdivision process, J. Approx. Theory, 80, 272, 10.1006/jath.1995.1019

Fox, 1971, On a functional differential equation, J. Inst. Math. Appl., 8, 271, 10.1093/imamat/8.3.271

Ajello, 1992, A model of stage structured population growth with density depended time delay, SIAM J. Appl. Math., 52, 855, 10.1137/0152048

Buhmann, 1993, Stability of the discretized pantograph differential equation, Math. Comput., 60, 575, 10.1090/S0025-5718-1993-1176707-2

Gülsu, 2005, The approximate solution of high-order linear difference equation with variable coefficients in terms of Taylor polynomials, Appl. Math. Comput., 168, 76, 10.1016/j.amc.2004.08.043

Gülsu, 2006, A Taylor polynomial approach for solving differential-difference equations, J. Comput. Appl. Math., 186, 349, 10.1016/j.cam.2005.02.009

Kanwal, 1989, A Taylor expansion approach for solving integral equations, Int. J. Math. Educ. Sci. Technol., 20, 411, 10.1080/0020739890200310

Nas, 2000, A Taylor polynomial approach for solving high-order linear Fredholm integro-differential equations, Int. J. Math. Educ. Sci. Technol., 31, 213, 10.1080/002073900287273

Sezer, 1996, A method fort he approximate solution of the second order linear differential equations in terms of Taylor polynomials, Int. J. Math. Educ. Sci. Technol., 27, 821, 10.1080/0020739960270606

Sezer, 2005, A new polynomial approach for solving difference and Fredholm integro-difference equation with mixed argument, Appl. Math. Comput., 171, 332, 10.1016/j.amc.2005.01.051

Yalçınbaş, 2000, The approximate solution of high-order linear Volterra–Fredholm integro-differential equations in terms of Taylor polynomials, Appl. Math. Comput., 112, 291, 10.1016/S0096-3003(99)00059-4

Sezer, 2008, Approximate solution of multi-pantograph equation with variable coefficients, J. Comput. Appl. Math., 214, 406, 10.1016/j.cam.2007.03.024

Liu, 2004, Properties of analytic solution and numerical solution and multi-pantograph equation, Appl. Math. Comput., 155, 853, 10.1016/j.amc.2003.07.017

Evans, 2005, The adomain decomposition method for solving delay differential equation, Int. J. Comput. Math., 82, 49, 10.1080/00207160412331286815

Sezer, 2007, A Taylor method for numerical solution of generalized pantograph equations with linear functional argument, 200, 217

Rao, 1982, Walsh stretch matrices and functional differential equation, IEEE Trans. Autom. Control, 27, 272, 10.1109/TAC.1982.1102858

Hwang, 1982, Laguerre series solution of a functional differential equation, Int. J. Syst. Sci., 13, 783, 10.1080/00207728208926388