A collocation method using Hermite polynomials for approximate solution of pantograph equations
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ockendon, 1971, The dynamics of a current collection system for an electric locomotive, Proc. Roy. Soc. London A, 322, 447, 10.1098/rspa.1971.0078
Derfel, 1996, On the asymptotics of solutions of a class of linear functional–differential equations, Eur., J. Appl. Math., 7, 511
G.R. Morris, A. Feldstein, E.W. Bowen, The Phragmen–Lindel' of principle and a class of functional–differential equations, in: Proceedings of the NRL–MRC Conference on Ordinary Differential Equations, 1972, pp. 513–540.
Derfel, 1997, The pantograph equation in the complex plane, J. Math. Anal. Appl., 213, 117, 10.1006/jmaa.1997.5483
Derfel, 1980, On compactly supported solutions of a class of functional–differential equations
Derfel, 1995, Generalized refinement equation and subdivision process, J. Approx. Theory, 80, 272, 10.1006/jath.1995.1019
Fox, 1971, On a functional differential equation, J. Inst. Math. Appl., 8, 271, 10.1093/imamat/8.3.271
Ajello, 1992, A model of stage structured population growth with density depended time delay, SIAM J. Appl. Math., 52, 855, 10.1137/0152048
Buhmann, 1993, Stability of the discretized pantograph differential equation, Math. Comput., 60, 575, 10.1090/S0025-5718-1993-1176707-2
Gülsu, 2005, The approximate solution of high-order linear difference equation with variable coefficients in terms of Taylor polynomials, Appl. Math. Comput., 168, 76, 10.1016/j.amc.2004.08.043
Gülsu, 2006, A Taylor polynomial approach for solving differential-difference equations, J. Comput. Appl. Math., 186, 349, 10.1016/j.cam.2005.02.009
Kanwal, 1989, A Taylor expansion approach for solving integral equations, Int. J. Math. Educ. Sci. Technol., 20, 411, 10.1080/0020739890200310
Nas, 2000, A Taylor polynomial approach for solving high-order linear Fredholm integro-differential equations, Int. J. Math. Educ. Sci. Technol., 31, 213, 10.1080/002073900287273
Sezer, 1996, A method fort he approximate solution of the second order linear differential equations in terms of Taylor polynomials, Int. J. Math. Educ. Sci. Technol., 27, 821, 10.1080/0020739960270606
Sezer, 2005, A new polynomial approach for solving difference and Fredholm integro-difference equation with mixed argument, Appl. Math. Comput., 171, 332, 10.1016/j.amc.2005.01.051
Yalçınbaş, 2000, The approximate solution of high-order linear Volterra–Fredholm integro-differential equations in terms of Taylor polynomials, Appl. Math. Comput., 112, 291, 10.1016/S0096-3003(99)00059-4
Sezer, 2008, Approximate solution of multi-pantograph equation with variable coefficients, J. Comput. Appl. Math., 214, 406, 10.1016/j.cam.2007.03.024
Liu, 2004, Properties of analytic solution and numerical solution and multi-pantograph equation, Appl. Math. Comput., 155, 853, 10.1016/j.amc.2003.07.017
Evans, 2005, The adomain decomposition method for solving delay differential equation, Int. J. Comput. Math., 82, 49, 10.1080/00207160412331286815
Sezer, 2007, A Taylor method for numerical solution of generalized pantograph equations with linear functional argument, 200, 217
Rao, 1982, Walsh stretch matrices and functional differential equation, IEEE Trans. Autom. Control, 27, 272, 10.1109/TAC.1982.1102858