Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Một phương pháp hợp tác cho các phương trình vi phân trễ phân số bậc biến đổi đa hạng sử dụng đa thức Chebyshev dịch chuyển
Tóm tắt
Trong bài viết này, một dạng tổng quát của các phương trình vi phân trễ phân số bậc biến đổi đa hạng (GVOFDDE) được trình bày. Các GVOFDDE được giới thiệu có bậc biến đổi với nhiều hạng và các đạo hàm bậc nguyên cho tất cả các hạng bị trễ hoặc có đối số bình thường. Đạo hàm bậc biến đổi là một sự tổng quát của các bậc phân số và bậc nguyên, vì vậy nó được xem xét trong nghiên cứu này. Phương pháp hợp tác được áp dụng với sự hỗ trợ của các đa thức Chebyshev dịch chuyển để giải quyết các GVOFDDE được trình bày như một kỹ thuật rời rạc hóa ma trận. Kỹ thuật được trình bày biến tất cả các hạng của GVOFDDE thành một phương trình ma trận với các ma trận toán tác mới. Độ phù hợp của sơ đồ được trình bày được đo bằng nhiều ví dụ kiểm tra số.
Từ khóa
#Các phương trình vi phân trễ phân số bậc biến đổi đa hạng #Phương pháp hợp tác Chebyshev dịch chuyển #Đạo hàm phân số bậc biến đổi CaputoTài liệu tham khảo
[1] A. Oustaloup F.M.B. Levron Frequency-band complex noninteger differentiator: characterization and synthesis IEEE Trans CAS-I 47 1 2000 25 39 10.1109/81. 817385 Oustaloup, A., Levron, F.M.B.: Frequency-band complex noninteger differentiator: characterization and synthesis. IEEE Trans CAS-I 47(1), 25–39 (2000). doi:10.1109/81. 817385
[2] S.A. David J.A.T. Machado D.D. Quintino J.M. Balthazar Partial chaos suppression in a fractional order macroeconomic model Math. Comput. Simul. 122 2016 55 68 10.1016/j.matcom.2015.11.004 David, S.A., Machado, J.A.T., Quintino, D.D., Balthazar, J.M.: Partial chaos suppression in a fractional order macroeconomic model. Math. Comput. Simul. 122, 55–68 (2016). doi:10.1016/j.matcom.2015.11.004
[3] R.E. Gutiérrez-Carvajal L.F. de Melo J.M. Rosário J.T. Machado Condition-based diagnosis of mechatronic systems using a fractional calculus approach Int. J. Syst. Sci. 47 9 2014 2169 2177 10.1080/00207721.2014. 978833 Gutiérrez-Carvajal, R.E., de Melo, L.F., Rosário, J.M., Machado, J.T.: Condition-based diagnosis of mechatronic systems using a fractional calculus approach. Int. J. Syst. Sci. 47(9), 2169–2177 (2014). doi:10.1080/00207721.2014. 978833
[4] A.M. Lopes J.A.T. Machado Integer and fractional-order entropy analysis of earthquake data serie Nonlinear Dyn. 84 1 2016 79 90 10.1007/s11071-015-2231-x Lopes, A.M., Machado, J.A.T.: Integer and fractional-order entropy analysis of earthquake data serie. Nonlinear Dyn. 84(1), 79–90 (2016). doi:10.1007/s11071-015-2231-x
[5] K. Shah F. Jarad T. Abdeljawad Stable numerical results to a class of time-space fractional partial differential equations via spectral method Journal of Advanced Research 25 2020 39 48 Shah, K., Jarad, F., & Abdeljawad, T. Stable numerical results to a class of time-space fractional partial differential equations via spectral method. Journal of Advanced Research, 25, 39–48,(2020).
[6] R. Amin K. Shah M. Asif I. Khan F. Ullah An efficient algorithm for numerical solution of fractional integro-differential equations via Haar wavelet J. Comput. Appl. Math. 381 2021 113028 Amin, R., Shah, K., Asif, M., Khan, I., & Ullah, F. (2021). An efficient algorithm for numerical solution of fractional integro-differential equations via Haar wavelet. Journal of Computational and Applied Mathematics, 381, 113028.
[7] J.A.T. Machado V. Kiryakova F. Mainardi Recent history of fractional calculus Commun. Nonlinear Sci. Numer. Simul. 16 3 2011 1140 1153 10.1016/j.cnsns.2010.05.027 Machado, J.A.T., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1140–1153 (2011). doi:10.1016/j.cnsns.2010.05.027
null
[9] D. Baleanu Z.B. Guvenc J.A.T. Machado New Trends in Nanotechnology and Fractional Calculus Applications 2010 Springer Netherlands 10.1007/978-90-481-3293-5 Baleanu, D., Guvenc, Z.B., Machado, J.A.T.: New Trends in Nanotechnology and Fractional Calculus Applications. Springer, Netherlands (2010). doi:10.1007/ 978-90-481-3293-5
[10] K. Li G. Maione M. Fei X. Gu Recent advances on modeling, control, and optimization for complex engineering systems Math. Probl. Eng. 2015 2015 1 10.1155/2015/746729 Li, K., Maione, G., Fei, M., Gu, X.: Recent advances on modeling, control, and optimization for complex engineering systems. Math. Probl. Eng. 2015, 1–1 (2015). doi:10.1155/2015/746729
[11] C.F.M. Coimbra Mechanics with variable-order differential operators Ann. Phys. 12 11–12 2003 692 703 10.1002/andp.200310032 Coimbra, C.F.M.: Mechanics with variable-order differential operators. Annalen der Physik 12(11–12), 692–703 (2003). doi:10.1002/andp.200310032
[12] C.M. Soon C.F.M. Coimbra M.H. Kobayashi The variable viscoelasticity oscillator Ann. Phys. 14 6 2005 378 389 10.1002/andp.200410140 Soon, C.M., Coimbra, C.F.M., Kobayashi, M.H.: The variable viscoelasticity oscillator. Annalen der Physik 14(6), 378–389 (2005). doi:10.1002/andp.200410140
[13] S.G. Samko Fractional integration and differentiation of variable order Ann. Math. 21 3 1995 213 236 10.1007/BF01911126 Samko, S.G.: Fractional integration and differentiation of variable order. Ann. Math. 21(3), 213–236 (1995). doi:10.1007/BF01911126
[14] C. Lorenzo T. Hartley Variable order and distributed order fractional operators Nonlinear Dynam. 29 1–4 2002 57 98 10.1023/A:1016586905654 Lorenzo, C., Hartley, T.: Variable order and distributed order fractional operators. Nonlinear Dynam. 29(1–4), 57– 98 (2002). doi:10.1023/A:1016586905654
[15] L.E.S. Ramirez C.F.M. Coimbra On the selection and meaning of variable order operators for dynamic modeling Int. J. Differ. Equ. 2010 2010 1 16 10.1155/2010/846107 Ramirez, L.E.S., Coimbra, C.F.M.: On the selection and meaning of variable order operators for dynamic modeling. Int. J. Differ. Equ. 2010, 1–16 (2010). doi:10.1155/2010/846107
[16] M. Lifshits W. Linde Fractional integration operators of variable order: continuity and compactness properties Mathematische Nachrichten 287 8–9 2013 980 1000 10.1002/mana.201200337 Lifshits, M., Linde, W.: Fractional integration operators of variable order: continuity and compactness properties. Mathematische Nachrichten 287(8–9), 980–1000 (2013). doi:10.1002/mana.201200337
[17] S.G. Samko B. Ross Integration and differentiation to a variable fractional order Integral Transforms Spec. Funct. 1 4 1993 277 300 10.1080/10652469308819027 Samko, S.G., Ross, B.: Integration and differentiation to a variable fractional order. Integral Transforms Spec. Funct. 1(4), 277–300 (1993). doi:10.1080/10652469308819027
[18] S. Samko Fractional integration and differentiation of variable order: an overview Nonlinear Dynam. 71 4 2013 653 662 10.1007/s11071-012-0485-0 Samko, S.: Fractional integration and differentiation of variable order: an overview. Nonlinear Dynam. 71(4), 653–662 (2013). doi:10.1007/s11071-012-0485-0
[19] H. Sheng H. Sun C. Coopmans Y. Chen G.W. Bohannan Physical experimental study of variable-order fractional integrator and differentiator Eur. Phys. J. Spec. Top. 193 1 2011 93 104 10.1140/epjst/e2011-01384-4 Sheng, H., Sun, H., Coopmans, C., Chen, Y., Bohannan, G.W.: Physical experimental study of variable-order fractional integrator and differentiator. Eur. Phys. J. Spec. Top. 193(1), 93–104 (2011). doi:10.1140/epjst/e2011-01384-4
[20] D. Tavares R. Almeida D.F.M. Torres Caputo derivatives of fractional variable order: numerical approximations Commun. Nonlinear Sci. Numer. Simul. 35 2016 69 87 10.1016/j.cnsns.2015.10.027 Tavares, D., Almeida, R., Torres, D.F.M.: Caputo derivatives of fractional variable order: numerical approximations. Commun. Nonlinear Sci. Numer. Simul. 35, 69–87 (2016). doi:10.1016/j.cnsns.2015.10.027
[21] A.H. Bhrawy M.A. Zaky Numerical algorithm for the variable-order caputo fractional functional differential equation Nonlinear Dyn 1–9 2016 10.1007/s11071-016-2797-y Bhrawy, A.H., Zaky, M.A.: Numerical algorithm for the variable-order caputo fractional functional differential equation. Nonlinear Dyn, 1–9 (2016). doi:10.1007/s11071-016-2797-y
[22] A.H. Bhrawy M.A. Zaky Numerical simulation for twodimensional variable-order fractional nonlinear cable equation Nonlinear Dynam. 80 1–2 2015 101 116 10.1007/s11071-014-1854-7 Bhrawy, A.H., Zaky, M.A.: Numerical simulation for twodimensional variable-order fractional nonlinear cable equation. Nonlinear Dynam. 80(1–2), 101–116 (2015). doi:10.1007/s11071-014-1854-7
[23] H. Alrabaiah I. Ahmad R. Amin K. Shah A numerical method for fractional variable order pantograph differential equations based on Haar wavelet Engineering with Computers 2021 1 14 Alrabaiah, H., Ahmad, I., Amin, R., & Shah, K. (2021). A numerical method for fractional variable order pantograph differential equations based on Haar wavelet. Engineering with Computers, 1-14.
[24] G. Diaz C.F.M. Coimbra Nonlinear dynamics and control of a variable order oscillator with application to the van der pol equation Nonlinear Dyn. 56 1–2 2009 145 157 10.1007/s11071-008-9385-8 Diaz, G., Coimbra, C.F.M.: Nonlinear dynamics and control of a variable order oscillator with application to the van der pol equation. Nonlinear Dyn. 56(1–2), 145–157 (2009). doi:10.1007/s11071-008-9385-8
[25] L.E.S. Ramirez C.F.M. Coimbra On the variable order dynamics of the nonlinear wake caused by a sedimenting particle Phys. D-Nonlinear Phenom. 240 13 2011 1111 1118 10.1016/j.physd.2011.04.001 Ramirez, L.E.S., Coimbra, C.F.M.: On the variable order dynamics of the nonlinear wake caused by a sedimenting particle. Phys. D-Nonlinear Phenom. 240(13), 1111–1118 (2011). doi:10.1016/j.physd.2011.04.001
[26] D. Ingman J. Suzdalnitsky Control of damping oscillations by fractional differential operator with time-dependent order Comput. Methods Appl. Mech. Eng. 193 52 2004 5585 5595 10.1016/j.cma.2004.06.029 Ingman, D., Suzdalnitsky, J.: Control of damping oscillations by fractional differential operator with time-dependent order. Comput. Methods Appl. Mech. Eng. 193(52), 5585– 5595 (2004). doi:10.1016/j.cma.2004.06.029
[27] L.E.S. Ramirez C.F.M. Coimbra A variable order constitutive relation for viscoelasticity Ann. Phys. 16 7–8 2007 543 552 10.1002/andp.200710246 Ramirez, L.E.S., Coimbra, C.F.M.: A variable order constitutive relation for viscoelasticity. Annalen der Physik 16(7– 8), 543–552 (2007). doi:10.1002/andp.200710246
[28] Y.C.H. Sheng H. Sun T. Qiu Synthesis of multifractional Gaussian noises based on variable-order fractional operators Signal Process. 91 7 2011 1645 1650 10.1016/j.sigpro.2011.01.010 Sheng, Y.C.H., Sun, H., Qiu, T.: Synthesis of multifractional Gaussian noises based on variable-order fractional operators. Signal Process. 91(7), 1645–1650 (2011). doi:10.1016/j.sigpro.2011.01.010
[29] P. Ostalczyk T. Rybicki Variable-fractional-order deadbeat control of an electromagnetic servo J. Vib. Control 4 9–10 2008 1457 1471 10.1177/1077546307087437 Ostalczyk, P., Rybicki, T.: Variable-fractional-order deadbeat control of an electromagnetic servo. J.Vib. Control 4(9- 10), 1457-1471 (2008). doi:10.1177/1077546307087437
[30] J. Orosco C.F.M. Coimbra On the control and stability of variable-order mechanical systems Nonlinear Dyn. 1–16 2016 10.1007/s11071-016-2916-9 Orosco, J., Coimbra, C.F.M.: On the control and stability of variable-order mechanical systems. Nonlinear Dyn. 1–16 (2016). doi:10.1007/s11071-016-2916-9
[31] A. Babakhani D. Baleanu R. Khanbabaie Hopf bifurcation for a class of fractional dierential equations with delay Nonlinear Dynam. 69 3 2012 101 116 10.1007/s11071-011-0299-5 Babakhani, A., Baleanu, D., Khanbabaie, R.: Hopf bifurcation for a class of fractional dierential equations with delay. Nonlinear Dynam. 69(3), 101–116 (2012). doi:10.1007/s11071-011-0299-5
[32] Z. Gao A graphic stability criterion for non-commensurate fractional-order time-delay systems Nonlinear Dynam. 78 3 2014 2101 2111 10.1007/s11071-014-1580-1 Gao, Z.: A graphic stability criterion for non-commensurate fractional-order time-delay systems. Nonlinear Dynam. 78(3), 2101–2111 (2014). doi:10.1007/s11071-014-1580-1
[33] B.P. Moghaddam Z.S. Mostaghim A novel matrix approach to fractional finite difference for solving models based on nonlinear fractional delay differential equations Ain Shams Eng. J. 5 2 2014 585 594 10.1016/j.asej. 2013.11.007 Moghaddam, B.P., Mostaghim, Z.S.: A novel matrix approach to fractional finite difference for solving models based on nonlinear fractional delay differential equations. Ain Shams Eng. J. 5(2), 585–594 (2014). doi:10.1016/j.asej. 2013.11.007
[34] B.P. Moghaddam Z.S. Mostaghim Modified finite difference method for solving fractional delay differential equations Boletim da Sociedade Paranaense de Matemtica 35 2 2016 49 58 10.5269/bspm.v35i2.25081 Moghaddam, B.P., Mostaghim, Z.S.: Modified finite difference method for solving fractional delay differential equations. Boletim da Sociedade Paranaense de Matemtica 35(2), 49–58 (2016). doi:10.5269/bspm.v35i2.25081
[35] R. Amin K. Shah M. Asif I. Khan A computational algorithm for the numerical solution of fractional order delay differential equations Appl. Math. Comput. 402 2021 125863 Amin, R., Shah, K., Asif, M., & Khan, I. A computational algorithm for the numerical solution of fractional order delay differential equations. Applied Mathematics and Computation, 402, 125863, (2021).
null
[37] K.K. Ali M.A.A. El Salam E.M. Mohamed Chebyshev operational matrix for solving fractional order delay-differential equations using spectral collocation method Arab Journal of Basic and Applied Sciences 26 1 2019 342 353 Ali, K.K., El Salam, M.A.A., & Mohamed, E.M. (2019). Chebyshev operational matrix for solving fractional order delay-differential equations using spectral collocation method. Arab Journal of Basic and Applied Sciences, 26(1), 342-353.
[38] E.M. Mohamed K.R. Raslan K.K. Ali M.A. Abd El Salam On General Form of Fractional Delay Integro-Differential Equations Arab Journal of Basic and Applied Sciences 27 1 2020 313 323 Mohamed, E.M., Raslan, K.R., Ali, K.K., & Abd El Salam, M.A. (2020). On General Form of Fractional Delay Integro-Differential Equations. Arab Journal of Basic and Applied Sciences, 27(1), 313-323.
[39] K.K. Ali M.A. Abd El Salam E.M. Mohamed B. Samet S. Kumar M.S. Osman Numerical solution for generalized nonlinear fractional integro-differential equations with linear functional arguments using Chebyshev series Advances in Difference Equations 2020 1 2020 1 23 Ali, K.K., Abd El Salam, M.A., Mohamed, E.M., Samet, B., Kumar, S., & Osman, M.S. (2020). Numerical solution for generalized nonlinear fractional integro-differential equations with linear functional arguments using Chebyshev series. Advances in Difference Equations, 2020(1), 1-23.
[40] Khalid K. Ali M.A. Abd El Salam Emad M.H. Mohamed A numerical technique for a general form of nonlinear fractional-order differential equations with the linear functional argument International Journal of Nonlinear Sciences and Numerical Simulation 2020 1.ahead-of-print Ali, Khalid K., Abd El Salam, M.A. & Emad M.H. Mohamed. A numerical technique for a general form of nonlinear fractional-order differential equations with the linear functional argument. International Journal of Nonlinear Sciences and Numerical Simulation 1.ahead-of-print (2020).
[41] Y. Chen L. Liu B. Li Y. Sun Numerical solution for the variable order linear cable equation with Bernstein polynomials Appl. Math. Comput. 238 2014 329 341 Y. Chen, L. Liu, B. Li, Y.Sun, Numerical solution for the variable order linear cable equation with Bernstein polynomials, Appl. Math. Comput. 238 (2014) 329–341.
[42] S. Shen F. Liu J. Chen I. Turner V. Anh Numerical techniques for the variable order time fractional diffusion equation Appl. Math. Comput. 218 2012 10861 10870 S. Shen, F. Liu, J. Chen, I. Turner, V. Anh, Numerical techniques for the variable order time fractional diffusion equation, Appl. Math. Comput. 218 (2012) 10861–10870.
[43] J. Liu X. Li L. Wu An operational matrix of fractional differentiation of the second kind of Chebyshev polynomial for solving multi-term variable order fractional differential equation Math. Probl. Eng. 2016 2016 1 10 Liu, J., Li, X., and Wu, L., 2016. An operational matrix of fractional differentiation of the second kind of Chebyshev polynomial for solving multi-term variable order fractional differential equation. Math. Probl. Eng., 2016, pp. 1–10.
[44] A. El-Mesiry A. El-Sayed H. El-Saka Numerical methods for multi-term fractional (arbitrary) orders differential equations Appl. Math. Comput. 160 3 2005 683 699 El-Mesiry, A., El-Sayed, A., and El-Saka, H., 2005. Numerical methods for multi-term fractional (arbitrary) orders differential equations. Appl. Math. Comput., 160(3), pp. 683–699.
[45] Y.M. Chen L.Q. Liu B.F. Li Y. Sun Numerical solution for the variable order linear cable equation with Bernstein polynomials Appl. Math. Comput. 238 2014 329 341 Chen, Y.M., Liu, L.Q., Li, B.F., and Sun, Y., 2014. Numerical solution for the variable order linear cable equation with Bernstein polynomials. Appl. Math. Comput., 238, pp. 329–341.
[46] A.H. Bhrawy M.A. Zaky J.A.T. Machado Numerical solution of the two-sided space-time fractional telegraph equation via Chebyshev Tau approximation J. Optim. Theory Appl. 2016 10.1007/s10957-016-0863-8 Bhrawy, A.H., Zaky, M.A., Machado, J.A.T.: Numerical solution of the two-sided space-time fractional telegraph equation via Chebyshev Tau approximation. J. Optim. Theory Appl. (2016). doi:10.1007/s10957-016-0863-8
[47] M. Gülsu Y. Öztürk M. Sezer A new collocation method for solution of mixed linear integro-differential-difference equations Appl. Math. Comput. 216 7 2010 2183 2198 Gülsu, M., Öztürk, Y., & Sezer, M. (2010). A new collocation method for solution of mixed linear integro-differential-difference equations. Applied Mathematics and Computation, 216(7), 2183-2198.
null
null
[50] K. Maleknejad K. Nouri L. Torkzadeh Operational matrix of fractional integration based on the shifted second kind Chebyshev polynomials for solving fractional differential equations Mediterr. J. Math. 13 2016 1377 1390 Maleknejad, K., Nouri, K., and Torkzadeh, L., 2016. “Operational matrix of fractional integration based on the shifted second kind Chebyshev polynomials for solving fractional differential equations. Mediterr. J. Math., 13, pp. 1377–390.
[51] A.A. El-Sayed D. Baleanu P. Agarwal A novel Jacobi operational matrix for numerical solution of multi-term variable-order fractional differential equations, Journal of Taibah University for Science 14 1 2020 963 974 A.A. El-Sayed, D. Baleanu and P. Agarwal A novel Jacobi operational matrix for numerical solution of multi-term variable-order fractional differential equations, Journal of Taibah University for Science, 14:1, 963-974,2020.
null
[53] S. Irandoust-pakchin H. Kheiri S. Abdi-mazraeh Efficient computational algorithms for solving one class of fractional boundary value problems Comp Math Math Phys. 53 2013 920 932 Irandoust-pakchin S, Kheiri H, Abdi-mazraeh S. Efficient computational algorithms for solving one class of fractional boundary value problems. Comp Math Math Phys. 2013;53:920–932.
[54] P. Rahimkhani Y. Ordokhani E. Babolian A new operational matrix based on Bernoulli wavelets for solving fractional delay differential equations Numerical Algorithms 74 1 2017 223 245 Rahimkhani, P., Ordokhani, Y., & Babolian, E. (2017). A new operational matrix based on Bernoulli wavelets for solving fractional delay differential equations. Numerical Algorithms, 74(1), 223-245.