A coat of many scents: Cuticular hydrocarbons in multitrophic interactions of fig wasps with ants
Tài liệu tham khảo
Ando, 2004, Lepidopteran sex pheromones, Top. Curr. Chem., 239, 51, 10.1007/b95449
Bagnères, 2010, Chemical taxonomy with hydrocarbons, 121
Bain, 2014, How to be an ant on figs, Acta Oecol., 57, 88, 10.1016/j.actao.2013.05.006
Bischoff, 2014, Floral scent in natural hybrids of Ipomopsis (Polemoniaceae) and their parental species, Ann. Bot., 113, 533, 10.1093/aob/mct279
2010
Blomquist, 1987, Chemistry, biochemistry, and physiology of insect cuticular lipids, Arch. Insect Biochem. Physiol., 6, 227, 10.1002/arch.940060404
Borges, 2015, How to be a fig wasp parasite of the fig–fig wasp mutualism, Curr. Op. Insect Sci., 8, 34, 10.1016/j.cois.2015.01.011
Bos, 2012, Learning and perceptual similarity among cuticular hydrocarbons in ants, J. Insect Physiol., 58, 138, 10.1016/j.jinsphys.2011.10.010
Breiman, 2001, Random forests, Mach. Learn., 45, 5, 10.1023/A:1010933404324
Brophy, 1983, Hydrocarbon constituents of three species of dolichoderine ants, Insect Biochem., 13, 381, 10.1016/0020-1790(83)90021-5
Carlson, 1998, Elution patterns from capillary GC for methyl-branched alkanes, J. Chem. Ecol., 24, 1845, 10.1023/A:1022311701355
Carlson, 1989, Dimethyl disulfide derivatives of long chain alkenes, alkadienes, and alkatrienes for gas chromatography/mass spectrometry, Anal. Chem., 61, 1564, 10.1021/ac00189a019
Carroll, 1973, Ecology of foraging by ants, Annu. Rev. Ecol. Syst., 4, 231, 10.1146/annurev.es.04.110173.001311
Châline, 2005, Learning and discrimination of individual cuticular hydrocarbons by honeybees (Apis mellifera), Chem. Sens., 30, 327, 10.1093/chemse/bji027
Cherrett, 1970, Phytochemical arrestants for leaf-cutting ants Atta cephalotes (L) and Acromyrmex octospinosus (Reich), with some notes on ants' response, Bull. Entomol. Res., 59, 615, 10.1017/S0007485300003606
Choe, 2006, Homopteran chemical signatures reduce aggression of tending ants, Chemoecology, 16, 175, 10.1007/s00049-006-0344-x
Cook, 2003, Mutualists with attitude: coevolving fig wasps and figs, Trends Ecol. Evol., 18, 241, 10.1016/S0169-5347(03)00062-4
Cruaud, 2011, Out-of-Australia and back again: the worldwide historical biogeography of non-pollinating fig wasps (Hymenoptera: Sycophaginae), J. Biogeogr., 38, 209, 10.1111/j.1365-2699.2010.02429.x
Dani, 2001, Deciphering the recognition signature within the cuticular chemical profile of paper wasps, Anim. Behav., 62, 165, 10.1006/anbe.2001.1714
Dani, 2005, Nestmate recognition cues in the honey bee: differential importance of cuticular alkanes and alkenes, Chem. Sens., 30, 477, 10.1093/chemse/bji040
Debout, 2005, Behavioural traits mediating effects of two plant-ants on their specific myrmecophytic host, Insect. Soc., 52, 205, 10.1007/s00040-004-0795-4
Déjean, 1993, Efficiency in the exploitation of patchy environments by the ponerine ant Paltothyreus tarsatus: an ecological consequence of the flexibility of prey capture behavior, J. Ethol., 11, 43, 10.1007/BF02350005
Elgar, 2004, Predatory spider mimics acquire colony-specific cuticular hydrocarbons from their ant model prey, Naturwissenschaften, 91, 143, 10.1007/s00114-004-0507-y
Endo, 2012, The aphid-tending ant Lasius fuji exhibits reduced aggression towards aphids marked with ant cuticular hydrocarbons, Popul. Ecol., 54, 405, 10.1007/s10144-012-0314-9
Endo, 2013, Myrmecophilous aphids produce cuticular hydrocarbons that resemble those of their tending ants, Popul. Ecol., 55, 27, 10.1007/s10144-012-0355-0
Eriksson, 1985, Attack behaviour and distance perception in the Australian bulldog ant Myrmecia nigriceps, J. Exp. Biol., 119, 115, 10.1242/jeb.119.1.115
Espelie, 1989, Diet-related differences in the cuticular lipids of Manduca sexta larvae, J. Chem. Ecol., 15, 2003, 10.1007/BF01207433
Espelie, 1990, Cuticular hydrocarbons of species which interact on four trophic levels: apple, Malus pumila Mill.; codling moth, Cydia pomonella L.; a hymenopteran parasitoid, Ascogaster quadridentata Wesmael; and a hyperparasite, Perilampus fulvicornis Ashmead, Comp. Biochem. Physiol., 95B, 131
Espelie, 1988, Congruent cuticular hydrocarbons: biochemical convergence of a social wasp, an ant and a host plant, Biochem. Syst. Ecol., 16, 505, 10.1016/0305-1978(88)90053-1
Espelie, 1991, Plant and insect cuticular lipids serve as behavioral cues for insects, Arch. Insect Biochem. Physiol., 17, 223, 10.1002/arch.940170406
Fan, 2003, Hydrocarbon synthesis by enzymatically dissociated oenocytes of the abdominal integument of the German cockroach, Blattella germanica, Naturwissenschaften, 90, 121, 10.1007/s00114-003-0402-y
Genin, 1986, Cuticular hydrocarbons of gregarious and solitary locusts Locusta migratoria cinerascens, J. Chem. Ecol., 12, 1213, 10.1007/BF01012343
Ghara, 2010, Comparative life-history traits in a fig wasp community: implications for community structure, Ecol. Entomol., 35, 138, 10.1111/j.1365-2311.2010.01176.x
Ghara, 2011, Nature's Swiss army knives: ovipositor structure mirrors ecology in a multitrophic fig wasp community, PLoS One, 6, e23642, 10.1371/journal.pone.0023642
Ghara, 2014, Divvying up an incubator: how parasitic and mutualistic fig wasps use space within their nursery microcosm, Arthropod-Plant Interac., 8, 191, 10.1007/s11829-014-9300-9
Ghazoul, 2001, Can floral repellents pre-empt potential ant–plant conflicts?, Ecol. Lett., 4, 295, 10.1046/j.1461-0248.2001.00229.x
Greene, 2007, Structural complexity of chemical recognition cues affects the perception of group membership in the ants Linephithema humile and Aphaenogaster cockerelli, J. Exp. Biol., 210, 897, 10.1242/jeb.02706
Guerrieri, 2009, Ants recognize foes and not friends, Proc. Roy. Soc. B, 276, 2461, 10.1098/rspb.2008.1860
Guillem, 2014, Chemical deception among ant social parasites, Curr. Zool., 60, 62, 10.1093/czoolo/60.1.62
Haddad, 2008, Measuring smells, Curr. Op. Neurobiol., 18, 438, 10.1016/j.conb.2008.09.007
Hefetz, 2010, Future directions in hydrocarbon research, 477
Heil, 2003, Protective ant–plant interactions as model systems in ecological and evolutionary research, Annu. Rev. Ecol. Evol. Syst., 34, 425, 10.1146/annurev.ecolsys.34.011802.132410
Henrique, 2005, Similarity of cuticular lipids between a caterpillar and its host plant: a way to make prey undetectable for predatory ants?, J. Chem. Ecol., 31, 2551, 10.1007/s10886-005-7613-y
Herre, 2008, Evolutionary ecology of figs and their associates: recent progress and outstanding puzzles, Annu. Rev. Ecol. Evol. Syst., 39, 439, 10.1146/annurev.ecolsys.37.091305.110232
Hojo, 2014, Ants use partner specific odors to learn to recognize a mutualistic partner, PLoS One, 9, e86054, 10.1371/journal.pone.0086054
Howard, 2005, Ecological, behavioural, and biochemical aspects of insect hydrocarbons, Annu. Rev. Entomol., 50, 371, 10.1146/annurev.ento.50.071803.130359
Hughes, 1994, Convergence of elaiosomes and insect prey: evidence from ant foraging behaviour and fatty acid composition, Func. Ecol., 8, 358, 10.2307/2389829
Ichinose, 2010, Hydrocarbons detection levels in ants, Insect. Soc., 57, 453, 10.1007/s00040-010-0103-4
Jousselin, 2008, One fig to bind them all: host conservatism in a fig wasp community unraveled by cospeciation analyses among pollinating and nonpollinating fig wasps, Evolution, 62, 1777, 10.1111/j.1558-5646.2008.00406.x
Junker, 2011, Composition of epiphytic bacterial communities differs on petals and leaves, Plant Biol., 13, 918, 10.1111/j.1438-8677.2011.00454.x
Kather, 2012, Cuticular hydrocarbon profiles as a taxonomic tool: advantages, limitations and technical aspects, Physiol. Entomol., 37, 25, 10.1111/j.1365-3032.2011.00826.x
Kováts, 1965, Gas chromatographic characterization of organic substances in the retention index system, Adv. Chromat., 1, 229
Krishnan, 2014, Parasites exert conflicting selection pressures to affect reproductive asynchrony of their host plant in an obligate pollination mutualism, J. Ecol., 102, 1329
Krishnan, 2014, Finding hidden females in a crowd: mate recognition in fig wasps, Acta Oecol., 57, 80, 10.1016/j.actao.2013.03.015
Krokos, 2001, Alkadienes and alkenes, sex pheromone components of the almond seed wasp Eurytoma amygdali, J. Chem. Ecol., 27, 2169, 10.1023/A:1012218618218
Larkin, 2010, Central synaptic mechanisms underlie short-term olfactory habituation in Drosophila larvae, Learn. Mem., 17, 645, 10.1101/lm.1839010
Lenoir, 2013, Chemical integration of Thorictus myrmecophilous beetles into Cataglyphis ant nest, Biochem. Syst. Ecol., 51, 335, 10.1016/j.bse.2013.10.002
Leonhardt, 2013, Genes versus environment: geography and phylogenetic relationships shape the chemical profiles of stingless bees on a global scale, Proc. Roy. Soc. B, 280, 10.1098/rspb.2013.0680
Liang, 2000, “You are what you eat”: diet modifies cuticular hydrocarbons and nestmate recognition in the Argentine ant, Linepithema humile, Naturwissenschaften, 87, 412, 10.1007/s001140050752
Liepert, 1993, Recognition of aphid parasitoids by honeydew-collecting ants: the role of cuticular lipids in a chemical mimicry system, J. Chem. Ecol., 19, 2143, 10.1007/BF00979653
Liepert, 1996, Role of cuticular hydrocarbons of aphid parasitoids in their relationship to aphid-attending ants, J. Chem. Ecol., 22, 695, 10.1007/BF02033579
Marshall, 1979, Evidence for diglycerides as attractants in an ant–seed interaction, J. Chem. Ecol., 5, 335, 10.1007/BF00987919
Martin, 2009, How reliable is the analysis of complex cuticular hydrocarbon profiles by multivariate statistical methods?, J. Chem. Ecol., 35, 375, 10.1007/s10886-009-9610-z
Martin, 2008, Evolution of species-specific cuticular hydrocarbon patterns in Formica ants, Biol. J. Linn. Soc., 95, 131, 10.1111/j.1095-8312.2008.01038.x
Martin, 2013, Sources of variation in cuticular hydrocarbons in the ant Formica exsecta, J. Chem. Ecol., 39, 1415, 10.1007/s10886-013-0366-0
Menzel, 2008, Tropical parabiotic ants: highly unusual cuticular substances and low interspecific discrimination, Front. Zool., 5, 16, 10.1186/1742-9994-5-16
Menzel, 2014, What makes you a potential partner? Insights from convergently evolved ant–ant symbioses, Chemoecology, 24, 105, 10.1007/s00049-014-0149-2
Menzel, 2013, Crematoenones – a novel substance class exhibited by ants functions as appeasement signal, Front. Zool., 10, 32, 10.1186/1742-9994-10-32
Millar, 2000, Polyene hydrocarbons and epoxides: a second major class of lepidopteran sex attractant pheromones, Annu. Rev. Entomol., 45, 575, 10.1146/annurev.ento.45.1.575
Ozaki, 2005, Ant nestmate and non-nestmate discrimination by a chemosensory sensillum, Science, 309, 311, 10.1126/science.1105244
Parachnowitsch, 2012, Phenotypic selection to increase floral scent emission, but not flower size or colour in bee-pollinated Penstemon digitalis, New. Phytol., 195, 667, 10.1111/j.1469-8137.2012.04188.x
Pekár, 2002, Mimicry complex in two central European zodariid spiders (Araneae: Zodariidae): how Zodarion deceives ants, Biol. J. Linn. Soc., 75, 517, 10.1046/j.1095-8312.2002.00043.x
Pierce, 2002, The ecology and evolution of ant association in the Lycaenidae (Lepidoptera), Annu. Rev. Entomol., 47, 733, 10.1146/annurev.ento.47.091201.145257
R Development Core Team, 2009
Ranganathan, 2009, Predatory and trophobiont-tending ants respond differently to fig and fig wasp volatiles, Anim. Behav., 77, 1539, 10.1016/j.anbehav.2009.03.010
Ranganathan, 2010, Reducing the babel in plant volatile communication: using the forest to see the trees, Plant Biol., 12, 735, 10.1111/j.1438-8677.2009.00278.x
Ranganathan, 2011, To transform or not to transform: that is the dilemma in the statistical analysis of plant volatiles, Plant Signal. Behav., 6, 113, 10.4161/psb.6.1.14191
Ranganathan, 2010, Temporal associations in fig–wasp–ant associations: diel and phenological patterns, Entomol. Exp. Appl., 137, 50, 10.1111/j.1570-7458.2010.01038.x
Richard, 2004, Food influence on colonial recognition and chemical signature between nestmates in the fungus-growing ant Acromyrmex subterraneus subterraneus, Chemoecology, 14, 9, 10.1007/s00049-003-0251-3
Rostás, 2008, Plant surface wax affects parasitoid's response to host footprints, Naturwissenschaften, 95, 997, 10.1007/s00114-008-0411-y
Saverschek, 2010, Avoiding plants unsuitable for the symbiotic fungus: learning and long-term memory in leaf-cutting ants, Anim. Behav., 79, 689, 10.1016/j.anbehav.2009.12.021
Scammells, 1976, Diagnostic trends in the mass spectra of some mono methyl alkanes, Org. Mass Spectr., 11, 901, 10.1002/oms.1210110817
Schatz, 2010, Ants use odour cues to exploit fig–fig wasp interactions, Acta Oecol., 36, 107, 10.1016/j.actao.2009.10.008
Schatz, 2008, Fig wasps: a staple food for ants on Ficus, Biotropica, 40, 190, 10.1111/j.1744-7429.2007.00352.x
Schatz, 2006, Complex interactions on fig trees: ants capturing parasitic wasps as possible indirect mutualists of the fig–fig wasp interaction, Oikos, 113, 344, 10.1111/j.2006.0030-1299.13986.x
Schatz, 2009, A simple non-specific chemical signal mediates defence behaviour in a specialised ant–plant mutualism, Curr. Biol., 19, R361, 10.1016/j.cub.2009.03.026
Shenoy, 2012, Composition of extrafloral nectar influences interactions between the myrmecophyte Humboldtia brunonis and its ant associates, J. Chem. Ecol., 38, 88, 10.1007/s10886-011-0052-z
Silveira, 2010, Attracting predators without falling prey: chemical camouflage protects honeydew-producing treehoppers from ant predation, Am. Nat., 175, 261, 10.1086/649580
Skidmore, 1988, Lipid cues for seed-carrying by ants in Hepatica americana, J. Chem. Ecol., 14, 2185, 10.1007/BF01014024
Solazzo, 2015, Tetracosane on the cuticle of the parasitic butterfly Phengaris (Maculinea) nausithous triggers the first contact in the adoption process by Myrmica rubra foragers, Physiol. Entomol., 40, 10, 10.1111/phen.12083
Späethe, 2013, Plant species- and status-specific odorant blends guide oviposition choice in the moth Manduca sexta, Chem. Sens., 38, 147, 10.1093/chemse/bjs089
Stadler, 2005, Ecology and evolution of aphid–ant interactions, Annu. Rev. Ecol. Evol. Syst., 36, 345, 10.1146/annurev.ecolsys.36.091704.175531
Steidle, 2003, Dietary specialization and infochemical use in carnivorous arthropods: testing a concept, Entomol. Exp. Appl., 108, 133, 10.1046/j.1570-7458.2003.00080.x
Thomas, 2002, Parasitoid secretions provoke ant warfare, Nature, 417, 505, 10.1038/417505a
Traniello, 1989, Foraging strategies of ants, Annu. Rev. Entomol., 34, 191, 10.1146/annurev.en.34.010189.001203
Tsutsui, 2013, Dissecting ant recognition systems in the age of genomics, Biol. Lett., 9, 20130416, 10.1098/rsbl.2013.0416
van Wilgenburg, 2010, Deciphering the chemical basis of nestmate recognition, J. Chem. Ecol., 36, 751, 10.1007/s10886-010-9812-4
Vander Meer, 1989, Temporal changes in colony cuticular hydrocarbon patterns of Solenopsis invicta. Implications for nestmate recognition, J. Chem. Ecol., 15, 2115, 10.1007/BF01207442
Vet, 1992, Ecology of infochemical use by natural enemies in a tritrophic context, Annu. Rev. Entomol., 37, 141, 10.1146/annurev.en.37.010192.001041
von Beeren, 2011, Acquisition of chemical recognition cues facilitates integration into ant societies, BMC Ecol., 11, 30, 10.1186/1472-6785-11-30
Wang, 2008, Structure of a fig wasp community: temporal segregation of oviposition and larval diets, Symbiosis, 45, 113
Weinhold, 2011, Trichome-derived O-acyl sugars are a first meal for caterpillars that tags them for predation, Proc. Natl. Acad. Sci. U.S.A., 108, 7855, 10.1073/pnas.1101306108
Willmer, 2009, Floral volatiles controlling ant behaviour, Func. Ecol., 23, 888, 10.1111/j.1365-2435.2009.01632.x
Witte, 2009, Fine tuning of social integration by two myrmecophiles of the ponerine army ant, Leptogenys distinguenda, J. Chem. Ecol., 35, 355, 10.1007/s10886-009-9606-8
Youngsteadt, 2008, Seed odor mediates an obligate ant–plant mutualism in Amazonian rainforests, Proc. Natl. Acad. Sci. U.S.A., 105, 457, 10.1073/pnas.0708643105
Zachariades, 2010, Wasp emergence from the figs of Ficus sur: characteristics and predation by ants, Trop. Zool., 23, 121