A co-located solar receiver and thermal storage concept using silicate glass at1000°Cand above: Experiments and modeling in the optically-thick regime

Solar Energy - Tập 177 - Trang 553-560 - 2019
E. Casati1,2, A. Lankhorst3, U. Desideri2, A. Steinfeld1
1Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092 Zurich, Switzerland
2Department DESTEC, University of Pisa, Largo L. Lazzarino, 56122 Pisa, Italy
3CelSian Glass & Solar BV, Zwaanstraat 1, 5651 CA Eindhoven, The Netherlands

Tài liệu tham khảo

Ades, 1990, High temperature optical spectra of soda-lime-silica glasses and modelization in view of energetic applications, J. Non-Cryst. Solids, 125, 272, 10.1016/0022-3093(90)90858-J Almath Crucibles, 2018. Material properties. Available online at https://almath.co.uk/pages/material-properties (Accessed June 2018). ANSYS (2018). ANSYS Fluent 18.2 - Theory Guide. Technical Report. Badenhorst, 2016, The use of graphite foams for simultaneous collection and storage of concentrated solar energy, Carbon, 99, 17, 10.1016/j.carbon.2015.11.071 Bamford, 1978 Bingham, 2011, Corrosion of glass contact refractories for the vitrification of radioactive wastes: a review, Int. Mater. Rev., 56, 226, 10.1179/1743280410Y.0000000005 Cable, 2006, Classical glass technology Cárdenas, 2016, Design and modeling of a high temperature solar thermal energy storage unit based on molten soda lime silica glass, Sol. Energy, 126, 32, 10.1016/j.solener.2015.12.034 Choudhary, 2005, Heat transfer in glass-forming melts Churchill, 1975, Correlating equations for laminar and turbulent free convection from a vertical plate, Int. J. Heat Mass Transf., 18, 1323, 10.1016/0017-9310(75)90243-4 Davis, 2017, Solar-driven alumina calcination for CO2 mitigation and improved product quality, Green Chem., 19, 2992, 10.1039/C7GC00585G Elkin, 2013, Molten oxide glass materials for thermal energy storage, Energy Procedia, 49, 772, 10.1016/j.egypro.2014.03.083 Endrýs, 1997, Study of the high-temperature spectral behavior of container glass, Glass Sci. Technol.: Glastechnische Berichte, 70, 126 Epstein, 1999, Molten salt system with a ground base-integrated solar receiver storage tank, J. De Phys. IV: JP, 9 Eryou, 1972, An experimental and analytical study of radiative and conductive heat transfer in molten glass, J. Heat Transfer, 94, 224, 10.1115/1.3449904 Faber, 2002, Optical properties and redox state of silicate glass melts, C. R. Chim., 5, 705, 10.1016/S1631-0748(02)01439-X Field, 1993, Spectral remote sensing of the dynamic temperature distribution in glass plates, Glastechnische Berichte, 66, 118 Furler, 2015, Heat transfer and fluid flow analysis of a 4 kW solar thermochemical reactor for ceria redox cycling, Chem. Eng. Sci., 137, 373, 10.1016/j.ces.2015.05.056 Gil, A., Codd, D., Zhou, L., Trumper, D., Campbell, R., Grange, B., Calvet, N., Armstrong, P., Slocum, A., 2015. Design of a 100 kW concentrated solar power on demand volumetric receiver with integral thermal energy storage prototype. In: Proceedings of the ASME 2015 Power Conference (POWER2015). Gil, A., Grange, B., Perez, V., Tetreault-Friend, M., Codd, D., Calvet, N., Slocum, A., 2017. CSPonD demonstrative project: Start-up process of a 25 kW prototype. In: Proceedings of the 22nd SolarPACES Conference 2016, AIP Conf. Proc. vol. 1850, paper 110003, 1-6, pp. 110003–1-110003-6. Glicksman, 1973, Errors associated with temperature measurements in hot glass, J. Am. Ceram. Soc., 56, 250, 10.1111/j.1151-2916.1973.tb12481.x Herrera, 2017, Modeling of flow and heat transfer in a molten glass mini-film for high temperature heat collection in a falling-film solar central receiver, Heat Transfer Eng., 38, 1331, 10.1080/01457632.2016.1242969 Jelley, 2015, Concentrated solar power: Recent developments and future challenges, J. Power Energy, 229, 693, 10.1177/0957650914566895 Kapyfract A.G., 2016. Thermal conductivity of Rigiform materials after long exposure to high temperature. Personal communication. Kinzie, 1973 2002 Kuravi, 2013, Thermal energy storage technologies and systems for concentrating solar power plants, Prog. Energy Combust. Sci., 39, 285, 10.1016/j.pecs.2013.02.001 Lee, 2001, Two-dimensional combined conduction and radiation heat transfer: Comparison of the discrete ordinates method and the diffusion approximation methods, Num. Heat Transfer; Part A: Appl., 39, 205, 10.1115/1.1338133 van Leer, 1979, Towards the ultimate conservative difference scheme - V. A second-order sequel to Godunov’s method, J. Comput. Phys., 32, 101, 10.1016/0021-9991(79)90145-1 Leibfried, 1995, Convective heat loss from upward and downward-facing cavity solar receivers: measurements and calculations, J. Sol. Energy Eng., Trans. ASME, 117, 75, 10.1115/1.2870873 Mehos, M., Turchi, C., Vidal, J., Wagner, M., Ma, Z., 2017. Concentrating Solar Power Gen3 Demonstration Roadmap. Technical Report NREL/TP-5500-67464 National Renewable Energy Laboratory, U.S. Department of Energy. Modest, 2013 Muramoto, K., Takahashi, Y., Terakado, N., Yamazaki, Y., Suzuki, S., Fujiwara, T., 2018. VO2-dispersed glass: A new class of phase change material. Scientific Reports, 8. Pelay, 2017, Thermal energy storage systems for concentrated solar power plants, Renew. Sustain. Energy Rev., 79, 82, 10.1016/j.rser.2017.03.139 Petrasch, J., 2010. A free and open source Monte Carlo ray tracing program for concentrating solar energy research. In: Proceedings ASME 2010 4th International Conference on Energy Sustainability, pp. 125–132. Petrasch, 2007, A novel 50 kW 11,000 suns high-flux solar simulator based on an array of xenon arc lamps, J. Sol. Energy Eng., Trans. ASME, 129, 405, 10.1115/1.2769701 Pilon, 2014, Effective thermal conductivity of soda-lime silicate glassmelts with different iron contents between 1100 °C and 1500 °C, J. Am. Ceram. Soc., 97, 442, 10.1111/jace.12768 Prieto, 2016, Review of technology: Thermochemical energy storage for concentrated solar power plants, Renew. Sustain. Energy Rev., 60, 909, 10.1016/j.rser.2015.12.364 Rabl, 1976, Tower reflector for solar power plant, Sol. Energy, 18, 269, 10.1016/0038-092X(76)90027-X Romero, 2012, Concentrating solar thermal power and thermochemical fuels, Energy Environ. Sci., 5, 9234, 10.1039/c2ee21275g Rosseland, 1936 Segal, 1999, Reflective solar tower as an option for high temperature central receivers, J. Phys. IV, 9 Selkregg, 2018, Fusion cast refractories: Roles of containment, Am. Ceram. Soc. Bull., 97, 21 Seward III, T., Vascott, T., (Eds.), 2005. High Temperature Glass Melt Property Database for Process Modeling. The American Ceramic Society, Westerville, OH - USA. Slocum, 2011, Concentrated solar power on demand, Sol. Energy, 85, 1519, 10.1016/j.solener.2011.04.010 Steinfeld, 1997, High-temperature solar thermochemistry for CO2 mitigation in the extractive metallurgical industry, Energy, 22, 311, 10.1016/S0360-5442(96)00103-X Stephan, 1985, The thermal conductivity of fluid air, J. Phys. Chem. Ref. Data, 14, 227, 10.1063/1.555749 Taumoefolau, 2004, Experimental investigation of natural convection heat loss from a model solar concentrator cavity receiver, J. Sol. Energy Eng., Trans. ASME, 126, 801, 10.1115/1.1687403 Touloukian, 1972, Thermal radiative properties: Nonmetallic solids, vol. 8 Viskanta, 1975, Heat transfer in semitransparent solids, Adv. Heat Transfer, 11, 317, 10.1016/S0065-2717(08)70077-7 Viskanta, 1975, Spectral remote sensing of temperature distribution in semitransparent solids heated by an external radiation source, Appl. Opt., 14, 428, 10.1364/AO.14.000428 Viskanta, 1985, On the diffusion approximation for radiation transfer in glass, Glastechnische Berichte, 58, 80 Zhang, 2016, Thermal energy storage: Recent developments and practical aspects, Prog. Energy Combust. Sci., 53, 1, 10.1016/j.pecs.2015.10.003