A cloud-agnostic queuing system to support the implementation of deadline-based application execution policies
Tài liệu tham khảo
S. Wu, C. Niu, J. Rao, H. Jin, X. Dai, Container-based cloud platform for mobile computation offloading, in: 2017 IEEE International Parallel and Distributed Processing Symposium, IPDPS, May 2017, pp. 123–132.
Kiss, 2017, MiCADO - Microservices-based Cloud Application-level Dynamic Orchestrator, Future Gener. Comput. Syst.
North, 2013, Complex adaptive systems modeling with repast simphony, Complex Adapt. Syst. Model., 1, 3, 10.1186/2194-3206-1-3
COLA – Cloud Orchestration at the Level of Application, https://project-cola.eu/. (Accessed Online: 2019-01-25).
. Saker Solutions, Company Website, [Online]. https://www.sakersolutions.com/. (Accessed: 5 May 2019).
CloudiFacturing – Cloudification of Production Engineering for Predictive Digital Manufacturing [Online]. https://www.cloudifacturing.eu/. (Accessed: 5 May 2019).
DSS Consulting Company Website, [Online]. http://www.dssconsulting.com/. (Accessed: 5 May 2019).
Docker swarm, https://docs.docker.com/engine/swarm/. (Accessed Online: 2018-03-16).
Burns, 2016, Borg, omega, and kubernetes, Queue, 14, 10, 10.1145/2898442.2898444
. Apache mesos, http://mesos.apache.org/documentation/latest/frameworks/. (Accessed Online: 2018-03-16).
. Apache Mesos framework, https://github.com/dcos/metronome. (Accessed Online: 2019-01-27).
D. Abdurachmanov, Optimizing CMS build infrastructure via Apache Mesos. in: Proceedings, 21st International Conference on Computing in High Energy and Nuclear Physics, CHEP 2015, April 13–17, 2015, Okinawa, Japan.
Thain, 2004, Distributed computing in practice: the condor experience, Concurr. Comput.: Pract. Exper., 17, 323
. Slurm Workload Manager, Version 18.08, https://slurm.schedmd.com/. (Accessed Online: 2019-01-31).
Lovas, 2018, Orchestrated platform for cyber-physical systems, Complexity, 2018, 1, 10.1155/2018/8281079
What is AWS Batch? https://docs.aws.amazon.com/batch/latest/userguide/what-is-batch.html. (Accessed Online: 2019-01-28).
. Batch, https://azure.microsoft.com/en-gb/services/batch/. (Accessed Online: 2019-01-28).
Malawski, 2015, Algorithms for cost-and deadline-constrained provisioning for scientific workflow ensembles in IaaS clouds, Future Gener. Comput. Syst., 48, 1, 10.1016/j.future.2015.01.004
Le, 2013, Dynamic resource provisioning and scheduling with deadline constraint in elastic cloud, 113
Mao, 2010, Cloud auto-scaling with deadline and budget constraints, 41
Shi, 2014, A budget and deadline aware scientific workflow resource provisioning and scheduling mechanism for cloud, 672
Kovacs, 2018, Occopus: a multi-cloud orchestrator to deploy and manage complex scientific infrastructures, J. Grid Comput., 16, 19, 10.1007/s10723-017-9421-3
. Cloudsigma Holding AG, Cloud servers & Hosting. [Online]. https://www.cloudsigma.com/. (Accessed: 7 Feb 2019).
Taylor, 2019, Enabling cloud-based computational fluid dynamics with a Platform as a Service solution, IEEE Trans. Ind. Inf., 15, 85, 10.1109/TII.2018.2849558
. Prometheus, https://prometheus.io/. (Accessed Online: 2018-03-16).
OASIS Topology and Orchestration Specification for Cloud Applications Version 1.0 [Online]. http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html. (Accessed: 29-Mar-2018).
G. Pierantoni, T. Kiss, G. Gesmier, J. DesLauriers, G. Terstyanszky, J.M.M. Rapún, Flexible deployment of social media analysis tools, in: International Workshop on Science Gateways, 13–15 June 2018, Edinburgh, UK.
Introducing JSON, https://www.json.org/. (Accessed Online: 2019-01-17).
. Celery, http://www.celeryproject.org/. (Accessed Online: 2018-03-16).
. Rabbitmq, https://www.rabbitmq.com/. (Accessed Online: 2018-03-16).
. Redis, https://redis.io/. (Accessed Online: 2018-03-16).
. statsd, https://github.com/etsy/statsd. (Accessed Online: 2019-01-17).
. Jinja2, http://jinja.pocoo.org/docs/2.10/. (Accessed Online: 2019-01-15).
. trap man page, http://man7.org/linux/man-pages/man1/trap.1p.html. (Accessed Online: 2019-01-18).
Law, 2015
C.M. Macal, N.J. North, Tutorial on agent-based modelling and simulation, J. Simul. 4 (3) 151–162.
Taylor, 2017, Open science: Approaches and benefits for modeling & simulation, 535
Taylor, 2018, The CloudSME simulation platform and its applications: A generic multi-cloud platform for developing and executing commercial cloud-based simulations, Future Gener. Comput. Syst., 88, 524, 10.1016/j.future.2018.06.006
D.H. King, H.S. Harrison, Open Source simulation software “JaamSim”, in: R. Pasupathy, S.-H. Kim, A. Tolk, R. Hill, and M. E. Kuhl (Eds.), Proceedings of the 2013 Winter Simulation Conference.