A cloud-agnostic queuing system to support the implementation of deadline-based application execution policies

Future Generation Computer Systems - Tập 101 - Trang 99-111 - 2019
Tamas Kiss1, James DesLauriers1, Gregoire Gesmier1, Gabor Terstyanszky1, Gabriele Pierantoni1, Osama Abu Oun2, Simon J.E. Taylor3, Anastasia Anagnostou3, Jozsef Kovacs4
1Centre for Parallel Computing, University of Westminster, 115 New Cavemdish Street, London W1W 6UW, United Kingdom
2Cyber Security Group, School of Computing, University of Kent, Canterbury, United Kingdom
3Modelling & Simulation Group, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, United Kingdom
4MTA SZTAKI, Budapest, Hungary

Tài liệu tham khảo

S. Wu, C. Niu, J. Rao, H. Jin, X. Dai, Container-based cloud platform for mobile computation offloading, in: 2017 IEEE International Parallel and Distributed Processing Symposium, IPDPS, May 2017, pp. 123–132. Kiss, 2017, MiCADO - Microservices-based Cloud Application-level Dynamic Orchestrator, Future Gener. Comput. Syst. North, 2013, Complex adaptive systems modeling with repast simphony, Complex Adapt. Syst. Model., 1, 3, 10.1186/2194-3206-1-3 COLA – Cloud Orchestration at the Level of Application, https://project-cola.eu/. (Accessed Online: 2019-01-25). . Saker Solutions, Company Website, [Online]. https://www.sakersolutions.com/. (Accessed: 5 May 2019). CloudiFacturing – Cloudification of Production Engineering for Predictive Digital Manufacturing [Online]. https://www.cloudifacturing.eu/. (Accessed: 5 May 2019). DSS Consulting Company Website, [Online]. http://www.dssconsulting.com/. (Accessed: 5 May 2019). Docker swarm, https://docs.docker.com/engine/swarm/. (Accessed Online: 2018-03-16). Burns, 2016, Borg, omega, and kubernetes, Queue, 14, 10, 10.1145/2898442.2898444 . Apache mesos, http://mesos.apache.org/documentation/latest/frameworks/. (Accessed Online: 2018-03-16). . Apache Mesos framework, https://github.com/dcos/metronome. (Accessed Online: 2019-01-27). D. Abdurachmanov, Optimizing CMS build infrastructure via Apache Mesos. in: Proceedings, 21st International Conference on Computing in High Energy and Nuclear Physics, CHEP 2015, April 13–17, 2015, Okinawa, Japan. Thain, 2004, Distributed computing in practice: the condor experience, Concurr. Comput.: Pract. Exper., 17, 323 . Slurm Workload Manager, Version 18.08, https://slurm.schedmd.com/. (Accessed Online: 2019-01-31). Lovas, 2018, Orchestrated platform for cyber-physical systems, Complexity, 2018, 1, 10.1155/2018/8281079 What is AWS Batch? https://docs.aws.amazon.com/batch/latest/userguide/what-is-batch.html. (Accessed Online: 2019-01-28). . Batch, https://azure.microsoft.com/en-gb/services/batch/. (Accessed Online: 2019-01-28). Malawski, 2015, Algorithms for cost-and deadline-constrained provisioning for scientific workflow ensembles in IaaS clouds, Future Gener. Comput. Syst., 48, 1, 10.1016/j.future.2015.01.004 Le, 2013, Dynamic resource provisioning and scheduling with deadline constraint in elastic cloud, 113 Mao, 2010, Cloud auto-scaling with deadline and budget constraints, 41 Shi, 2014, A budget and deadline aware scientific workflow resource provisioning and scheduling mechanism for cloud, 672 Kovacs, 2018, Occopus: a multi-cloud orchestrator to deploy and manage complex scientific infrastructures, J. Grid Comput., 16, 19, 10.1007/s10723-017-9421-3 . Cloudsigma Holding AG, Cloud servers & Hosting. [Online]. https://www.cloudsigma.com/. (Accessed: 7 Feb 2019). Taylor, 2019, Enabling cloud-based computational fluid dynamics with a Platform as a Service solution, IEEE Trans. Ind. Inf., 15, 85, 10.1109/TII.2018.2849558 . Prometheus, https://prometheus.io/. (Accessed Online: 2018-03-16). OASIS Topology and Orchestration Specification for Cloud Applications Version 1.0 [Online]. http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html. (Accessed: 29-Mar-2018). G. Pierantoni, T. Kiss, G. Gesmier, J. DesLauriers, G. Terstyanszky, J.M.M. Rapún, Flexible deployment of social media analysis tools, in: International Workshop on Science Gateways, 13–15 June 2018, Edinburgh, UK. Introducing JSON, https://www.json.org/. (Accessed Online: 2019-01-17). . Celery, http://www.celeryproject.org/. (Accessed Online: 2018-03-16). . Rabbitmq, https://www.rabbitmq.com/. (Accessed Online: 2018-03-16). . Redis, https://redis.io/. (Accessed Online: 2018-03-16). . statsd, https://github.com/etsy/statsd. (Accessed Online: 2019-01-17). . Jinja2, http://jinja.pocoo.org/docs/2.10/. (Accessed Online: 2019-01-15). . trap man page, http://man7.org/linux/man-pages/man1/trap.1p.html. (Accessed Online: 2019-01-18). Law, 2015 C.M. Macal, N.J. North, Tutorial on agent-based modelling and simulation, J. Simul. 4 (3) 151–162. Taylor, 2017, Open science: Approaches and benefits for modeling & simulation, 535 Taylor, 2018, The CloudSME simulation platform and its applications: A generic multi-cloud platform for developing and executing commercial cloud-based simulations, Future Gener. Comput. Syst., 88, 524, 10.1016/j.future.2018.06.006 D.H. King, H.S. Harrison, Open Source simulation software “JaamSim”, in: R. Pasupathy, S.-H. Kim, A. Tolk, R. Hill, and M. E. Kuhl (Eds.), Proceedings of the 2013 Winter Simulation Conference.