A closed-form pricing formula for European options under a new stochastic volatility model with a stochastic long-term mean
Tóm tắt
Từ khóa
Tài liệu tham khảo
Albrecher, H., Mayer, P., Schoutens, W., Tistaert, J.: The little Heston trap. Wilmott 6(1), 83–92 (2007)
Andersen, T.G., Benzoni, L., Lund, J.: An empirical investigation of continuous-time equity return models. J. Finance 57(3), 1239–1284 (2002)
Bakshi, G., Cao, C., Chen, Z.: Empirical performance of alternative option pricing models. J. Finance 52(5), 2003–2049 (1997)
Bakshi, G., Ju, N., Ou-Yang, H.: Estimation of continuous-time models with an application to equity volatility dynamics. J. Financ. Econ. 82(1), 227–249 (2006)
Benhamou, E., Gobet, E., Miri, M.: Time dependent Heston model. SIAM J. Financ. Math. 1(1), 289–325 (2010)
Benjamin, M.A., Hinnant, H.O., Shigeno, T.T., Olmstead, D.N.: Multi-sensor fusion, October 16 (2007). US Patent 7,283,904
Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Political Econ. 81(3), 637–654 (1973)
Byelkina, S., Levin, A.: Implementation and calibration of the extended affine Heston model for Basket options and volatility derivatives. In: Sixth World Congress of the Bachelier Finance Society, Toronto (2010)
Chen, K., Poon, S.-H.: Consistent pricing and hedging volatility derivatives with two volatility surfaces. SSRN 2205582 (2013)
Chen, S., Luk, B.L.: Adaptive simulated annealing for optimization in signal processing applications. Signal Process. 79(1), 117–128 (1999)
Christoffersen, P., Heston, S., Jacobs, K.: The shape and term structure of the index option smirk: why multifactor stochastic volatility models work so well. Manag. Sci. 55(12), 1914–1932 (2009)
Christoffersen, P., Jacobs, K.: Which GARCH model for option valuation? Manag. Sci. 50(9), 1204–1221 (2004)
Christoffersen, P., Jacobs, K., Mimouni, K.: An empirical comparison of affine and non-affine models for equity index options. Springer, Berlin (2006). Manuscript
Cox, J.C., Ingersoll, J.E., Ross, S.A.: A theory of the term structure of interest rates. Econometrica 53(2), 385–407 (1985)
Cui, Y., del Baño Rollin, S., Germano, G.: Full and fast calibration of the Heston stochastic volatility model. Eur. J. Oper. Res. 263(2), 625–638 (2017)
Drimus, G.G.: Options on realized variance by transform methods: a non-affine stochastic volatility model. Quant. Finance 12(11), 1679–1694 (2012)
Dumas, B., Fleming, J., Whaley, R.E.: Implied volatility functions: empirical tests. J. Finance 53(6), 2059–2106 (1998)
Elliott, R.J., Lian, G.-H.: Pricing variance and volatility swaps in a stochastic volatility model with regime switching: discrete observations case. Quant. Finance 13(5), 687–698 (2013)
Feller, W.: The parabolic differential equations and the associated semi-groups of transformations. Ann. Math. 55(3), 468–519 (1952)
Forde, M., Jacquier, A.: Robust approximations for pricing Asian options and volatility swaps under stochastic volatility. Appl. Math. Finance 17(3), 241–259 (2010)
Gardiner, C.: Stochastic Methods. Springer-Verlag, Berlin (1985)
Goard, J.: Exact and approximate solutions for options with time-dependent stochastic volatility. Appl. Math. Model. 38(11–12), 2771–2780 (2014)
He, X.-J., Zhu, S.-P.: An analytical approximation formula for European option pricing under a new stochastic volatility model with regime-switching. J. Econ. Dyn. Control 71, 77–85 (2016)
Heston, S.L.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud. 6(2), 327–343 (1993)
Hull, J., White, A.: The pricing of options on assets with stochastic volatilities. J. Finance 42(2), 281–300 (1987)
Ingber, L.: Home page (2020). https://www.ingber.com. Accessed 30 June 2020
Ingber, L., Petraglia, A., Petraglia, M.R., Machado, M.A.S., et al.: Adaptive simulated annealing. In: Stochastic Global Optimization and Its Applications with Fuzzy Adaptive Simulated Annealing, pp. 33–62. Springer (2012)
Johnson, H.: Option pricing when the variance rate is changing. Working paper, University of California, Los Angeles (1979)
Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., et al.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)
Le, A.: Separating the components of default risk: a derivative-based approach. Q. J. Finance 5(1), 1550005 (2015)
Lim, K.G., Zhi, D.: Pricing options using implied trees: evidence from FTSE-100 options. J. Futures Mark. 22(7), 601–626 (2002)
Mikhailov, S., Nögel, U.: Heston’s stochastic volatility model: implementation, calibration and some extensions. Wilmott Mag. 4, 74–79 (2004)
Pacati, C., Pompa, G., Renò, R.: Smiling twice: the Heston++ model. J. Bank. Finance 96, 185–206 (2018)
Pacati, C., Renò, R., Santilli, M.: Heston model: shifting on the volatility surface. Risk, pp. 54–59 (2014)
Pan, J.: The jump-risk premia implicit in options: evidence from an integrated time-series study. J. Financ. Econ. 63(1), 3–50 (2002)
Poklewski-Koziell, W.: Stochastic volatility models: calibration, pricing and hedging. PhD thesis (2012)
Recchioni, M.C., Sun, Y.: An explicitly solvable Heston model with stochastic interest rate. Eur. J. Oper. Res. 249(1), 359–377 (2016)
Recchioni, M.C., Sun, Y., Tedeschi, G.: Can negative interest rates really affect option pricing? Empirical evidence from an explicitly solvable stochastic volatility model. Quant. Finance 17(8), 1257–1275 (2017)
Scott, L.O.: Option pricing when the variance changes randomly: theory, estimation, and an application. J. Financ. Quant. Anal. 22(4), 419–438 (1987)
Shu, J., Zhang, J.E.: Pricing S&P 500 index options under stochastic volatility with the indirect inference method. J. Deriv. Account. 1(2), 1–16 (2004)
Stein, E.M., Stein, J.C.: Stock price distributions with stochastic volatility: an analytic approach. Rev. Financ. Stud. 4(4), 727–752 (1991)
Wiggins, J.B.: Option values under stochastic volatility: theory and empirical estimates. J. Financ. Econ. 19(2), 351–372 (1987)