A classification model based on incomplete information on features in the form of their average values

Allerton Press - Tập 39 - Trang 336-344 - 2013
L. V. Utkin1, Yu. A. Zhuk2, I. A. Selikhovkin2
1St. Petersburg State Forest-Technical University, St. Petersburg, Russia
2St. Petersburg State Forest Technical University, St. Petersburg, Russia

Tóm tắt

This paper presents a model of classification under incomplete information in the form of mathematical expectations of features; it is based on the minimax (minimin) strategy of decision making. The discriminant function is calculated by maximization (minimization) of the risk functional as a measure of misclassification, by a set of distributions of probabilities with bounds determined by information on features, and minimization by the set of parameters. The algorithm is reduced to solution of the parametric problem of linear programming.

Tài liệu tham khảo

Bauman, E.V. and Moskalenko, N.E., Methods of Extreme Grouping of the Fractional Parameters, Aut. Remote Cont., 2008, vol. 69, pp. 1965–1972. Vapnik, V.N. and Chervonenkis, A.Ya., Teoriya raspoznavaniya obrazov (Theory of Image Recognition), Moscow: Nauka, 1974. Dorofeyuk, A.A., Expert-Ranging Analysis Methodology in Complex Organized Data Processing and Control Problems (History of Development and Perspectives), Problemy Upravleniya, 2009, no. 3.1, pp. 19–28. Dorofeyuk, Yu.A., Methods of Adaptive Structure Prognosis, Inform. Tekhnol. Vychisl. Sist., 2010, No. 3, pp. 53–58. Kuznetsov, V.P., Interval’nye statisticheskie modeli (Interval Statistical Models), Moscow: Radio i svyaz’, 1991. Merkov, A.B., Raspoznavanie obrazov: Vvedenie v metody statisticheskogo obucheniya (Recognition of Images: Introduction in the Statistical Learning Methods), Moscow: Editorial URSS, 2011. Tikhonov, A.N. and Arsenin, V.Ya., Metody resheniya nekorrektnykh zadach (Methods of Faulty Problem Solution), Moscow: Nauka, 1974. Utkin, L.V., Analiz riska i prinyatie reshenii pri nepolnoi informatsii (Risk Analysis and Decision Making at Incomplete Information), St. Petersburg: Nauka, 2007. Alaiz-Rodrguez, R., Guerrero-Curieses, A., and Cid-Sueiro, J., Minimax Regret Classifier for Imprecise Class Distributions, J. Mach. Learn. Res., 2007, vol. 8, pp. 103–130. Bishop, C.M., Pattern Recognition and Machine Learning New York: Springer-Verlag, 2006. Cherkassky, V. and Mulier, F., Learning from Data: Concepts, Theory, and Methods New York: Wiley, 2007. Hastie, T., Tibshirani, R., and Friedman, J., The Elements of Statistical Learning: Data Mining, Inference and Prediction New York: Springer-Verlag, 2009. Jain, A.K., Data Clustering: 50 Years beyond K-Means, Pattern Recognition Lett., 2010, vol. 31, pp. 651–666. Lanckriet, G.R., Ghaoui, L.E., Bhattacharyya, C., and Jordan, M.I., A Robust Minimax Approach to Classification, J. Mach. Learn. Res., 2003, vol. 3, pp. 555–582. Liu, T.-Y., Learning to Rank for Information Retrieval Berlin: Springer-Verlag, 2011. Mirkin, B.G. and Chiang, M.T., Intelligent Choice of the Number of Clusters in K-Means Clustering: An Experimental Study with Different Cluster Spreads, J. Classification, 2010, vol. 27, no. 1, pp. 3–41. Robert, C., The Bayesian Choice New York: Springer, 1994. Scholkopf, B. and Smola, A., Learning with Kernels: Support Vector Machines, Regularization, Optimization and beyond Cambridge, MA: MIT Press, 2002. Theodoridis, S., Koutroumbas, K., and Pikrakis, A., An Introduction to Pattern Recognition: A MATLAB Approach Amsterdam: Academic, 2009. Utkin, L.V., Regression Analysis Using the Imprecise Bayesian Normal Model, Int. J. Data Analysis Techn. Strateg., 2010, vol. 2, pp. 356–372. Utkin, L.V. and Coolen, F.P.W., Interval-Valued Regression and Classification Models in the Framework of Machine Learning, Proc. 7th Int. Symp. on Imprecise Probabilities: Theories and Applications, ISIPTA’11, SIPTA 2011, pp. 371–380. Utkin, L.V. and Coolen, F., On Reliability Growth Models Using Kolmogorov-Smirnov Bounds, Int. J. Perform. Eng., 2011, vol. 7, pp. 5–19. Utkin, L.V. and Zhuk, Y.A., A Machine Learning Algorithm for Classification under Extremely Scarce Information, Int. J. Data Anal. Techn. Strateg., 2012, vol. 4, pp. 115–133. Walley, P., Inferences from Multinomial Data: Learning about a Bag of Marbles, J. Roy. Stat. Soc., Ser. B, 1996, vol. 58, pp. 3–57. Walley, P., Statistical Reasoning with Imprecise Probabilities London: Chapman and Hall, 1991. Wu, X., Kumar, V., Quinlan, et al., Top 10 Algorithms in Data Mining, Knowledge and Information Systems, 2008, vol. 14, no. 1, pp. 1–37.