A class of preconditioner for solving the Riesz distributed-order nonlinear space-fractional diffusion equations
Tóm tắt
In this paper, we study the fast algorithm for the numerical solution of the Riesz distributed-order nonlinear space-fractional diffusion equation. The finite difference method is employed to discretize the problem, the resulting system is symmetric positive definite Toeplitz matrix and then the fast Fourier transform can be used to reduce the computational cost of the matrix–vector multiplication. The preconditioned conjugate gradient method with a class of circulant preconditioners is proposed to solve the discretized linear system. Theoretically, we prove that the spectrum of the preconditioned matrix is clustering around 1, which can guarantee the superlinear convergence rate of the proposed methods. Finally, numerical experiments are carried out to demonstrate that our proposed method works very well.
Tài liệu tham khảo
Abbaszadeh, M.: Error estimate of second-order finite difference scheme for solving the Riesz space distributed-order diffusion equation. Appl. Math. Lett. 88, 179–185 (2019)
Abbaszadeh, M., Dehghan, M.: A POD-based reduced-order Crank-Nicolson/fourth-order alternating direction implicit (ADI) finite difference scheme for solving the two-dimensional distributed-order Riesz space-fractional diffusion equation. Appl. Numer. Math. 158, 271–291 (2020)
Abbaszadeh, M., Dehghan, M.: Fourth-order alternating direction implicit difference scheme to simulate the space-time Riesz tempered fractional diffusion equation. Int. J. Comput. Math. 98, 2137–2155 (2021)
Atanackovic, T., Budincevic, M., Pilipovic, S.: On a fractional distributed-order oscillator. J. Phys. A: Math. Gen. 38, 6703 (2005)
Benson, D., Wheatcraft, W., Meerschaert, M.: Application of a fractional advectiondispersion equation. Water Resour. Res. 36, 1403–1413 (2000)
Berg, J., Nyström, K.: A unified deep artificial neural network approach to partial differential equations in complex geometries. Neurocomputing 317, 28–41 (2018)
Biala, T.A.: Second-order predictor-corrector schemes for nonlinear distributed-order space-fractional differential equations with non-smooth initial data. Int. J. Comput. Math. 96, 1861–1878 (2019)
Caputo, M.: Diffusion with space memory modelled with distributed order space fractional differential equations. Ann. Geophys. 46, 223–234 (2003)
Caputo, M.: Distributed order differential equations modelling dielectric induction and diffusion, Fract. Calc. Appl. Anal. 4, 421–442 (2001)
Caputo, M.: Linear models of dissipation whose Q is almost frequency independent II. Geophys. J. Int. 13, 529–539 (1967)
Chan, R.: Toeplitz preconditioners for Toeplitz systems with nonnegative generating functions. IMA J. Numer. Anal. 11, 333–345 (1991)
Chan, R., Strang, G.: Toeplitz equations by conjugate gradients with circulant preconditioner. SIAM J. Sci. Statist. Comput. 10, 104–119 (1989)
Chan, R., Ng, M.: Conjugate gradient methods for Toeplitz systems. SIAM Rev. 38, 427–482 (1996)
Chechkin, A.V., Gorenflo, R., Sokolov, I.M.: Retarding sub-diffusion and accelerating super-diffusion governed by distributed-order fractional diffusion equations. Phy. Rev. E. 66(4), 046129 (2002)
Donatelli, M., Mazza, M., Serra-Capizzano, S.: Spectral analysis and multigrid methods for finite volume approximations of space-fractional diffusion equations. SIAM J. Sci. Comput. 40, A4007–A4039 (2018)
Fan, W., Liu, F.: A numerical method for solving the two-dimensional distributed order space-fractional diffusion equation on an irregular convex domain. Appl. Math. Lett. 77, 114–121 (2018)
Gao, X., Yin, B., Li, H., Liu, Y.: TT-M FE method for a 2D nonlinear time distributed-order and space fractional diffusion equation. Math. Comput. Simulation 181, 117–137 (2021)
Gorenflo, R., Luchko, Y., Stojanovtc, M.: Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability density, Fract. Calc. Appl. Anal. 16, 297–316 (2013)
Guo, S., Mei, L., Zhang, Z., Li, C., Li, M., Wang, Y.: A linearized finite difference/spectral-Galerkin scheme for three-dimensional distributed-order time-space fractional nonlinear reaction-diffusion-wave equation: Numerical simulations of Gordon-type solutions. Comput. Phys. Commun. 252, 107144 (2020)
Hafez, R.M., Zaky, M.A., Abdelkawy, M.A.: Jacobi spectral Galerkin method for distributed-order fractional Rayleigh-Stokes problem for a generalized second grade fluid. Front. Phys. 7, (2020)
Hao, Z., Sun, Z., Cao, W.: A fourth-order approximation of fractional derivatives with its applications. J. Comput. Phys. 281, 787–805 (2015)
Hao, Z., Sun, Z.: A linearized high-order difference scheme for the fractional Ginzburg-Landau equation, Numer. Meth. Part. Differ. Equ. 33, 105–124 (2017)
Hartley, T. T., Lorenzo, C. F.: Fractional system identification: an approach using continuous order-distributions, NASA/TM-1999-209640, (1999)
Hendy, A., Zaky, M.: Graded mesh discretization for coupled system of nonlinear multi-term time-space fractional diffusion equations, Eng. Comput., pp. 1–13, (2020)
Hu, X., Liu, F., Turner, I., Anh, V.: A numerical investigation of the time distributed-order diffusion model. ANZIAM J. 55, 464–478 (2014)
Huang, X., Fang, Z., Sun, H., Zhang, C.: A circulant preconditioner for the Riesz distributed-order space-fractional diffusion equations. Linear Multilinear Algebra 24, 1–16 (2020)
Jian, H., Huang, T., Gu, X., Zhao, X., Zhao, Y.: Fast implicit integration factor method for nonlinear space Riesz fractional reaction-diffusion equations. J. Comput. Appl. Math. 378, 112935 (2020)
Jian, H., Huang, T., Gu, X., Zhao, X., Zhao, Y.: Fast second-order implicit difference schemes for time distributed-order and Riesz space fractional diffusion-wave equations, Comput. Math. Appl. 94, 136–154 (2021)
Jia, J., Wang, H.: A fast finite difference method for distributed-order space-fractional partial differential equations on convex domains. Comput. Math. Appl. 75, 2031–2043 (2018)
Jin, X.: Preconditioning Techniques for Toeplitz Systems. Higher Education Press, Beijing (2010)
Kochubei, A.N.: Distributed order calculus and equations of ultraslow diffusion. J. Math. Anal. Appl. 340, 252–281 (2008)
Lei, S., Sun, H.: A circulant preconditioner for fractional diffusion equations. J. Comput. Phys. 242, 715–725 (2013)
Lorenzo, C.F., Hartley, T.T.: Variable order and distributed order fractional operators. Nonlinear Dyn. 29, 57–98 (2002)
Lyu, P., Vong, S.: A linearized second-order scheme for nonlinear time fractional Klein-Gordon type equations. Numer. Algor. 78, 485–511 (2018)
Mazza, M., Serra-Capizzano, S., Usman, M.: Symbol-based preconditioning for Riesz distributed-order space-fractional diffusion equations. Electron. Trans. Numer. Anal. 54, 499–513 (2021)
Mognaderi, H., Dehghan, M., Donatelli, M., Mariarosa, M.: Spectral analysis and multigrid preconditioners for two-dimensional space-fractional diffusion equations. J. Comput. Phys. 350, 992–1011 (2017)
Naghibolhosseini, M.: Estimation of outer-middle ear transmission using DPOAEs and fractional-order modeling of human middle ear, City University of New York, (2015)
Ng, M.: Band preconditioners for block-Toeplitz-Toeplitz-block systems. Linear Algebra Appl. 259, 307–327 (1997)
Parvizi, M., Eslahchi, M., Dehghan, M.: Numerical solution of fractional advection-diffusion equation with a nonlinear source term. Numer. Algor. 68, 601–629 (2015)
Patnaik, S., Semperlotti, F.: Application of variable-and distributed-order fractional operators to the dynamic analysis of nonlinear oscillators. Nonlinear Dyn. 100, 561–580 (2020)
Podlubny, I., Skovranek, T., Vinagre Jara, B. M., Petras, I., Verbitsky, V., Chen, Y.: Matrix approach to discrete fractional calculus III: non-equidistant grids, variable step length and distributed orders, Philos. Trans. Roy. Soc. A, 371 : 20120153, (2013)
Serra-Capizzano, S.: Toeplitz preconditioners constructed from linear approximation processes. SIAM J. Matrix Anal. Appl. 20, 446–465 (1999)
Su, N., Nelson, P.N., Connor, S.: The distributed-order fractional diffusion-wave equation of groundwater flow: theory and application to pumping and slug tests. J. Hydrol. 529, 1262–1273 (2015)
Wang, H., Wang, K., Sircar, T.: A \(\cal{O} (N\log ^{2}N)\) direct finite difference method for fractional diffusion equations. J. Comput. Phys. 229, 4038–4054 (2010)
Wang, D., Xiao, A., Yang, W.: A linearly implicit conservative difference scheme for the space fractional coupled nonlinear Schr\(\ddot{o}\)dinger equations. J. Comput. Phys. 272, 644–655 (2014)
Yashveer, K., Vineet Kumar, S.: Computational approach based on wavelets for financial mathematical model governed by distributed order fractional differential equation. Math. Comput, Simulation 190, 531–569 (2021)
Zhang, C., Jin, J., Sun, H., Sheng, Q.: A spatially high-order hybrid L1-CCD method for solving time fractional Schr\(\ddot{o}\)dinger equations. Appl. Math. 66, 213–232 (2020)
Zhang, C., Sun, H.: A linearized three-point combined compact difference method for nonlinear time fractional Klein-Gordon equations, East Asian. J. Appl. Math. 11, 604–617 (2021)
Zhao, X., Sun, Z., Hao, Z.: A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schr\(\ddot{o}\)dinger equation. SIAM J. Sci. Comput. 36, A2865–A2886 (2014)
Zheng, X., Liu, H., Wang, H., Fu, H.: An efficient finite volume method for nonlinear distributed-order space-fractional diffusion equations in three space dimensions. J. Sci. Comput. 80, 1395–1418 (2019)