A class of Lie algebras arising from intersection matrices

Springer Science and Business Media LLC - Tập 10 - Trang 185-198 - 2014
Li-meng Xia1, Naihong Hu2
1Faculty of Science, Jiangsu University, Zhenjiang, China
2Department of Mathematics, East China Normal University, Shanghai, China

Tóm tắt

We find a class of Lie algebras, which are defined from the symmetrizable generalized intersection matrices. However, such algebras are different from generalized intersection matrix algebras and intersection matrix algebras. Moreover, such Lie algebras generated by semi-positive definite matrices can be classified by the modified Dynkin diagrams.

Tài liệu tham khảo

Allison B, Benkart G, Gao Y. Lie Algebras Graded by the Root System BC r, r ⩽ 2. Mem Amer Math Soc, No 751. Providence: Amer Math Soc, 2002 Benkart G, Zelmanov E. Lie algebras graded by finite root systems and intersection matrix algebras. Invent Math, 1996, 126: 1–45 Berman S. On generators and relations for certain involutory subalgebras of Kac-Moody Lie algebras. Comm Algebra, 1989, 17: 3165–3185 Berman S, Jurisich E, Tan S. Beyond Borcherds Lie algebras and inside. Trans Amer Math Soc, 2001, 353: 1183–1219 Berman S, Moody R V. Lie algebras graded by finite root systems and the intersection matrix algebras of Slowdowy. Invent Math, 1992, 108: 323–347 Bhargava S, Gao Y. Realizations of BCr-graded intersection matrix algebras with grading subalgebras of type B r, r ⩽ 3. Pacific J Math, 2013, 263(2): 257–281 Carter R. Lie Algebras of Finite and Affine Type. Cambridge: Cambridge Univ Press, 2005 Eswara Rao S, Moody R V, Yokonuma T. Lie algebras and Weyl groups arising from vertex operator representations. Nova J Algebra and Geometry, 1992, 1: 15–57 Gabber O, Kac V G. On defining relations of certain infinite-dimensional Lie algebras. Bull Amer Math Soc (NS), 1981, 5: 185–189 Gao Y. Involutive Lie algebras graded by finite root systems and compact forms of IM algebras. Math Z, 1996, 223: 651–672 Gao Y, Xia L. Finite-dimensional representations for a class of generalized intersection matrix algebras. arXiv: 1404.4310v1 Humphreys J E. Introduction to Lie Algebras and Representation Theory. New York: Springer, 1972 Jacobson N. Lie Algebras. New York: Inter Science, 1962 Kac V G. Infinite Dimensional Lie Algebras. 3rd ed. Cambridge: Cambridge, Univ Press, 1990 Lusztig G. Introduction to quantum groups. Boston: Birkhäuser, 1993 Neher E. Lie algebras graded by 3-graded root systems and Jordan pairs covered by grids. Amer J Math, 1996, 118(2): 439–491 Peng L. Intersection matrix Lie algebras and Ringel-Hall Lie algebras of tilted algebras. In: Happel D, Zhang Y B, eds. Proc 9-th Inter Conf Representation of Algebras, Vol I. Beijing: Beijing Normal Univ Press, 2002, 98–108 Peng L, Xu M. Symmetrizable intersection matrices and their root systems. arXiv: 0912.1024 Slodowy P. Singularitäten, Kac-Moody Lie-Algebren, assoziierte Gruppen und Verallgemeinerungen. Habilitationsschrift, Universität Bonn, March 1984 Slodowy P. Beyond Kac-Moody algebras and inside. Can Math Soc Conf Proc, 1986, 5: 361–371 Xu M, Peng L. Symmetrizable intersection matrix Lie algebras. Algebra Colloq 2011, 18(4): 639–646