A class of Gaussian processes with fractional spectral measures
Tài liệu tham khảo
Alpay, 2008, Une généralisation de lʼintégrale stochastique de Wick–Itô, C. R. Math. Acad. Sci. Paris, 346, 261, 10.1016/j.crma.2008.01.023
Alpay
Alpay, 2010, On the characteristics of a class of gaussian processes within the white noise space setting, Stochastic Process. Appl., 120, 1074, 10.1016/j.spa.2010.03.004
Alpay, 2008, Rational functions associated with the white noise space and related topics, Potential Anal., 29, 195, 10.1007/s11118-008-9094-4
Dutkay, 2009, Orthogonal exponentials, translations, and Bohr completions, J. Funct. Anal., 257, 2999, 10.1016/j.jfa.2009.05.014
Dutkay, 2006, Wavelets on fractals, Rev. Mat. Iberoamericana, 22, 131, 10.4171/RMI/452
Dutkay, 2008, Fourier series on fractals: a parallel with wavelet theory, vol. 464, 75
Dutkay, 2009, Quasiperiodic spectra and orthogonality for iterated function system measures, Math. Z., 261, 373, 10.1007/s00209-008-0329-2
Dym, 1970, Application of de Branges spaces of integral functions to the prediction of stationary Gaussian processes, Illinois J. Math., 14, 299, 10.1215/ijm/1256053188
Grafakos, 2009, Modern Fourier Analysis, vol. 250
Guelfand, 1967, Les distributions. Tome 4: Applications de lʼanalyse harmonique, vol. 23
Hida, 1993, White Noise. An Infinite-Dimensional Calculus, vol. 253
Hida, 2008
Holden, 1996, Stochastic Partial Differential Equations, 10.1007/978-1-4684-9215-6
Hu, 2009, Stochastic integral representation of the L2 modulus of Brownian local time and a central limit theorem, Electron. Commun. Probab., 14, 529, 10.1214/ECP.v14-1511
Itô, 1965, Diffusion Processes and Their Sample Paths, vol. 125
Ji, 2009, Quantum stochastic integral representations of Fock space operators, Stochastics, 81, 367, 10.1080/17442500902919645
Jorgensen, 2007, Affine systems: asymptotics at infinity for fractal measures, Acta Appl. Math., 98, 181, 10.1007/s10440-007-9156-4
Jorgensen, 1992, Spectral theory for Borel sets in Rn of finite measure, J. Funct. Anal., 107, 72, 10.1016/0022-1236(92)90101-N
Jorgensen, 1993, Group-theoretic and geometric properties of multivariable Fourier series, Expo. Math., 11, 309
Jorgensen, 1993, Harmonic analysis of fractal measures induced by representations of a certain C⁎-algebra, Bull. Amer. Math. Soc. (N.S.), 29, 228, 10.1090/S0273-0979-1993-00428-2
Jorgensen, 1994, Harmonic analysis and fractal limit-measures induced by representations of a certain C⁎-algebra, J. Funct. Anal., 125, 90, 10.1006/jfan.1994.1118
Jorgensen, 1995, Estimates on the spectrum of fractals arising from affine iterations, vol. 37, 191
Jorgensen, 1998, Dense analytic subspaces in fractal L2-spaces, J. Anal. Math., 75, 185, 10.1007/BF02788699
Jorgensen, 2009, Analysis of fractals, image compression, entropy encoding, Karhunen–Loève transforms, Acta Appl. Math., 108, 489, 10.1007/s10440-009-9529-y
Jorgensen, 2009, An extension of Wiener integration with the use of operator theory, J. Math. Phys., 50, 103502, 10.1063/1.3196622
Kadison, 1997, Fundamentals of the Theory of Operator Algebras, vol. I. Elementary Theory, vol. 15
Lifshits, 1995, Gaussian Random Functions, 10.1007/978-94-015-8474-6
Lototsky, 2009, Stochastic integrals and evolution equations with Gaussian random fields, Appl. Math. Optim., 59, 203, 10.1007/s00245-008-9051-z
Mansi, 2010, Stochastic quantization and AdS/CFT, Phys. Lett. B, 685, 215, 10.1016/j.physletb.2010.01.033
McKean, 1969, Stochastic Integrals, vol. 5
Minlos, 1963, Generalized Random Processes and Their Extension to a Measure, vol. 3, 291
Ogundiran, 2010, Mayer problem for quantum stochastic control, J. Math. Phys., 51, 023521, 10.1063/1.3300332
Øksendal, 2003, Stochastic Differential Equations. An Introduction with Applications
Rudin, 1982
Strichartz, 1998, Remarks on: “Dense analytic subspaces in fractal L2-spaces” [J. Anal. Math. 75 (1998) 185–228; MR1655831 (2000a:46045)] by P.E.T. Jorgensen and S. Pedersen, J. Anal. Math., 75, 229, 10.1007/BF02788700
Strichartz, 2000, Mock Fourier series and transforms associated with certain Cantor measures, J. Anal. Math., 81, 209, 10.1007/BF02788990