A class of Boehmians for a recent generalization of Hankel–Clifford transformation of arbitrary order

Afrika Matematika - Tập 27 - Trang 877-888 - 2015
S. K. Q. Al-Omari1
1Department of Applied Sciences, Faculty of Engineering Technology, Al-Balqa’ Applied University, Amman, Jordan

Tóm tắt

We investigate some generalization of a class of Hankel–Clifford transformations of arbitrary order on a class of Boehmians. We show that the generalized transform is one-to-one and onto mapping compatible with the classical transform. An inverse class of Hankel–Clifford transformations are also discussed in some details.

Tài liệu tham khảo

Boehme, T.K.: The support of Mikusinski operators. Trans. Am. Math. Soc. 176, 319–334 (1973) Al-Omari, S.K.Q.: On the Generalized double Sumudu transforms of distributions and space of Boehmians. Int. J. Algebr. 6(3), 139–146 (2012) Karunakaran, V., Angeline, R.: Gelfand transform for a Boehmian space of analytic functions. Ann. Pol. Math. 101, 39–45 (2011) Beardsley, J., Mikusinski, P.: A sheaf of Boehmians. Ann. Pol. Math. 107, 293–307 (2013) Al-Omari, S.K.Q.: Distributional and tempered distributional diffraction Fresnel transforms and their extension to Boehmian spaces. Ital. J. Pure Appl. Math. 30, 179–194 (2013) Al-Omari, S.K.Q.: A note on \(F_{a}^{b}\) Transformation of generalized functions. Int. J. Pure Appl. Math. 86(1), 19–33 (2013) Mikusinski, P.: Fourier transform for integrable Boehmians. Rocky Mt. J. Math. 17(3), 577–582 (1987) Mikusinski, P.: Tempered Boehmians and ultradistributions. Proc. Amer. Math. Soc. 123(3), 813–817 (1995) Mikusinski, P.: Convergence of Boehmians. Japan. J. Math. 9, 159–179 (1983) Al-Omari, S.K.Q., Loonker, D., Banerji, P.K., Kalla, S.L.: Fourier sine (cosine) transform for ultradistributions and their extensions to tempered and ultraBoehmian spaces. Integ. Trans. Spl. Funct. 19(6), 453–462 (2008) Al-Omari, S.K.Q.: On a generalized Meijer-Laplace transforms of Fox function type kernels and their extension to a class of Boehmians. Georgian J. Math. In Press (2015) Al-Omari, S. K. Q.,Kilicman, A.: Note on Boehmians for class of optical Fresnel wavelet transforms. J. Funct. Spaces Appl. 2012. Article ID 405368. doi:10.1155/2012/405368 (2012) Al-Omari, S.K.Q., Kilicman, A.: On generalized Hartley-Hilbert and Fourier-Hilbert transforms. Adv. Differ. Equ. 2012, 232 (2012). doi:10.1186/1687-1847-2012-232, 1–12(2012) Al-Omari, S.K.Q., Kilicman, A.: On diffraction Fresnel transforms for Boehmians. Abstr. Appl. Anal. 2011, 1–13 (2011). Article ID 712746 Al-Omari, S.K.Q.: On the application of natural transforms. Int. J. Pure Appl. Math. 85(4), 729–744 (2013) Al-Omari, S.K.Q.: Hartley transforms on certain space of generalized functions. Georgian Math. J. 20(30), 415–426 (2014) Al-Omari, S. K. Q., Kilicman, A.: Note on Boehmians for class of optical Fresnel wavelet transforms. J. Funct. Spaces Appl. 2012. Article ID 405368. doi:10.1155/2012/405368 (2012) Al-Omari, S.K.Q., Kilicman, A.: On generalized Hartley-Hilbert and Fourier-Hilbert transforms. Adv. Differ. Equ. 2012, 232 (2012). doi:10.1186/1687-1847-2012-232, 1–12(2012) Al-Omari, S.K.Q., Kilicman, A.: An estimate of Sumudu transform for Boehmians. Adv. Differ. Equ. 2013, 77 (2013) Loonker, D., Banerji, P.K.: Wavelet transform of fractional integrals for integrable Boehmians. Appl. Appl. Math. 5(1), 1–10 (2010) Al-Omari, S.K.Q., Kilicman, A.: Unified treatment of the Kratzel transformation for generalized functions. Abstr. Appl. Anal. 2013. Article ID 750524, 1–12 (2013) Al-Omari, S.K.Q., Kilicman, A.: Some remarks on the extended Hartley-Hilbert and Fourier-Hilbert transforms of Boehmians. Abstr. Appl. Anal. 2013. Article ID 348701 (2013) Al-Omari, S.K.Q.: Distributional and tempered distributional diffraction Fresnel transforms and their extension to Boehmian spaces. Ital. J. Pure Appl. Math. 30, 179–194 (2013) Bhuvaneswari, R., Karunakaran, V.: Boehmians of type S and their Fourier transforms. Ann. UMCS Math. 64, 27–43 (2010) Karunakaran, V., Prasanna, D.C.: The Laplace transform on a Boehmian space. Ann. Pol. Math. 97, 151–157 (2010) Nemzer, D.: S-asymptotic properties of Boehmians. Integr. Trasforms Spec. Funct. 21(7), 503–513 (2010) Ganesan, C.: Weighted ultra distributions and Boehmians. Int. J. Math. Anal. 4(15), 703–712 (2010) Karunakaran, V., Ganesan, C.: Fourier transform on integrable Boehmians. Integr. Transforms Spec. Funct. 20, 937–941 (2009) Nemzer, D.: A note on multipliers for integrable Boehmians. Fract. Calc. Appl. Anal. 12, 87–96 (2009) Roopkumar, R.: An extension of distributional wavelet transform. Colloq. Math. 115, 195–206 (2009) Nemzer, D.: A note on the convergence of a series in the space of Boehmians. Bull. Pure Appl. Math. 2, 63–69 (2008) Nemzer, D.: One-parameter groups of Boehmians. Bull. Korean Math. Soc. 44, 419–428 (2007) Loonker, D., Banerji, P.K., Debnath, L.: On the Hankel transform for Boehmians. Integral Trasforms Spec. Funct. 21(7), 479–486 (2010) Al-Omari, S.K.Q.: A Mellin transform for a space of Lebesgue integrable Boehmians. Int. J. Contemp. Math. Sci. 6, 1597–1606 (2011) Al-Omari, S.K.Q., Al-Omari, J.F.: Hartley transform for \(L_{p}\) Boehmians and spaces of ultradistributions. Int. Math. Forum 7, 433–443 (2012) Zemanian, A.H.: Generalized integral transformation, Interscience, 1968. Republished by Dover, New York (1987) Mendez, J., Robayana, M.: A pair of generalized Hankel-Clifford transformations and their applications. J. Math. Anal. Appl. 154, 543–557 (1991) Malgonde, S.P., Bandewar, S.R.: On the generalized Hankel-Clifford transformation of arbitrary order. Proc. Indian Acad. Sci. Math. Sci. 110(3), 293–304 (2000)