A chosen message attack on Demytko’s elliptic curve cryptosystem

Burt Kaliski1
1RSA Laboratories, Redwood City, U.S.A.

Tóm tắt

Từ khóa


Tài liệu tham khảo

D. Bleichenbacher, W. Bosma, and A. K. Lenstra. Some remarks on Lucas-based cryptosystems, in D. Coppersmith, editor,Advances in Cryptology—Crypto '95. Springer-Verlag, New York, 1995, pp. 386–396.

N. Demytko, A new elliptic curve based analogue of RSA, in T. Helleseth, editor,Advances in Cryptology—Eurocrypt '93, Springer-Verlag, New York, pp. 40–49.

N. Koblitz, Elliptic curve cryptosystems,Mathematics of Computation, vol. 48 (1987), pp. 203–209.

K. Koyama, U. M. Maurer, T. Okamoto, and S. A. Vanstone, New public-key schemes based on elliptic curves over the ringZ n , in J. Feigenbaum, editor,Advances in Cryptology—Crypto '91, Springer-Verlag, New York, 1994, pp. 252–266.

K. Kurosawa, K. Okada, and S. Tsujii, Low exponent attack against elliptic curve RSA, in J. Pieprzyk and R. Safavi-Naini, editorsAdvances in Cryptology—Asiacrypt '94, Springer-Verlag, New York, 1995, pp. 376–383.

V. S. Miller, Use of elliptic curves in cryptography, in H. C. Williams, editor,Advances in Cryptology—Crypto '85, Springer-Verlag, New York, 1986, pp. 417–426.

P. L. Montgomery, Speeding the Pollard and elliptic curve methods of factorization,Mathematics of Computation, vol. 48, no. 177 (1987), pp. 243–264.

R. L. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital signatures and public-key cryptosystems,Communications of the ACM, vol. 21, no. 2 (1978), pp. 120–126.