A chimera of Urtica dioica agglutinin and tobacco chitinase displays both agglutination and chitinase activity
Tài liệu tham khảo
Peumans, 1984, An unusual lectin from stinging nettle (Urtica dioica) rhizomes, FEBS Lett., 177, 99, 10.1016/0014-5793(84)80989-8
Beintema, 1992, The primary structure of stinging nettle (Urtica dioica) agglutinin: a two-domain member of the hevein family, FEBS Lett., 299, 131, 10.1016/0014-5793(92)80231-5
Does, 1999, Characterization of Urtica dioica agglutinin isolectins and the encoding gene family, Plant Mol. Biol., 39, 335, 10.1023/A:1006134932290
Archer, 1960, The proteins of Hevea brasiliensis latex: isolation and characterization of crystalline hevein, Biochem. J., 75, 236, 10.1042/bj0750236
K. Walujono, R.A. Scholma, J.J. Beintema, A. Mariono, A.M. Hahn, Amino acid sequence of hevein, Proceedings of the International Rubber Conference, Kuala Lumpur, Vol. 2, Rubber Research Institute, Malaysia, 1975, pp. 518–531.
Hom, 1995, Ligand-induced perturbations in Urtica dioica agglutinin, FEBS Lett., 361, 157, 10.1016/0014-5793(95)00133-T
Van Damme, 1987, Isolectin composition of individual clones of Urtica dioica: evidence for phenotypic differences, Physiol. Plant., 71, 328, 10.1111/j.1399-3054.1987.tb04351.x
Lerner, 1992, The gene for stinging nettle lectin (Urtica dioica agglutinin) encodes both a lectin and a chitinase, J. Biol.Chem., 267, 11085, 10.1016/S0021-9258(19)49878-5
Does, 1999, Processing, targeting and antifungal activity of Urtica dioica agglutinin in transgenic tobacco, Plant Physiol., 120, 421, 10.1104/pp.120.2.421
Meins, 1994, Plant chitinase genes, Plant Mol. Biol. Reptr., 12, S22, 10.1007/BF02671561
Neuhaus, 1996, A revised nomenclature for chitinase genes, Plant Mol. Biol. Reptr., 14, 102, 10.1007/BF02684897
Broekaert, 1989, A chitin-binding lectin from stinging nettle rhizomes with antifungal properties, Science, 245, 1100, 10.1126/science.245.4922.1100
Linthorst, 1990, Analysis of acidic and basic chitinases from tobacco and petunia and their constitutive expression in transgenic tobacco, Mol. Plant Microbe Interact., 3, 252, 10.1094/MPMI-3-252
Shinshi, 1990, Structure of a tobacco endochitinase gene: evidence that different chitinase genes can arise by transposition of sequences encoding a cysteine-rich domain, Plant Mol. Biol., 14, 357, 10.1007/BF00028772
Neuhaus, 1991, A short C-terminal sequence is necessary and sufficient for the targeting of chitinases to the plant vacuole, Proc. Natl. Acad. Sci. U.S.A., 88, 10362, 10.1073/pnas.88.22.10362
Melchers, 1993, Extracellular targeting of the vacuolar tobacco proteins AP24, chitinase and β-1,3-glucanase in transgenic plants, Plant Mol. Biol., 21, 583, 10.1007/BF00014542
Sticher, 1993, Posttranslational processing of a new class of hydroxyproline-containing proteins, Plant Physiol., 101, 1239, 10.1104/pp.101.4.1239
van Buuren, 1992, The structure and regulation of homeologous tobacco endochitinase genes of Nicotiana sylvestris and N. tomentosiformis origin, Mol. Gen. Genet., 232, 460, 10.1007/BF00266251
Sticher, 1992, Vacuolar chitinases of tobacco: a new class of hydroxyproline-containing proteins, Science, 257, 655, 10.1126/science.1496378
Sela-Buurlage, 1993, Only specific tobacco (Nicotiana tabacum) chitinases and β-1,3-glucanases exhibit antifungal activity, Plant Physiol., 101, 857, 10.1104/pp.101.3.857
Sanger, 1977, DNA sequencing with chain-termination inhibitors, Proc. Natl. Acad. Sci. U.S.A., 74, 5463, 10.1073/pnas.74.12.5463
Jongedijk, 1995, Synergistic activity of chitinases and β-1,3-glucanases enhances fungal resistance in transgenic tomato plants, Euphytica, 85, 173, 10.1007/BF00023946
Sambrook, 1989
de Wit, 1982, Evidence for the occurrence of race and cultivar-specific elicitors of necrosis in intercellular fluids of compatible interactions of Cladosporium fulvum and tomato, Physiol. Plant. Pathol., 21, 1, 10.1016/0048-4059(82)90002-9
Bradford, 1976, A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248, 10.1016/0003-2697(76)90527-3
Laemmli, 1970, Cleavage of structural proteins during the assembly of the head of the bacteriophage T4, Nature, 227, 680, 10.1038/227680a0
Schägger, 1987, Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa, Anal. Biochem., 166, 368, 10.1016/0003-2697(87)90587-2
Wirth, 1990, Dye-labelled substrates for the assay and detection of chitinase and lysozyme activity, J. Microbiol. Methods, 12, 197, 10.1016/0167-7012(90)90031-Z
Melchers, 1994, A new class of tobacco chitinases homologous to bacterial exo-chitinases displays antifungal activity, Plant J., 5, 469, 10.1046/j.1365-313X.1994.5040469.x
Yun, 1996, Novel osmotically induced antifungal chitinases and bacterial expression of an active recombinant isoform, Plant Physiol., 111, 1219, 10.1104/pp.111.4.1219
Brunner, 1998, Substrate specificities of tobacco chitinases, Plant J., 14, 225, 10.1046/j.1365-313X.1998.00116.x
Iseli, 1993, The N-terminal cysteine-rich domain of tobacco class I chitinase is essential for chitin binding but not for catalytic or antifungal activity, Plant Physiol., 103, 221, 10.1104/pp.103.1.221
M.B. Sela-Buurlage, In vitro sensitivity and tolerance of Fusarium solani towards chitinases and β-1,3-glucanases, Ph.D. thesis, Landbouwuniversiteit Wageningen, Wageningen, The Netherlands, 1996.
Van Parijs, 1991, Hevein: an antifungal protein from rubber-tree (Hevea brasiliensis) latex, Planta, 183, 258, 10.1007/BF00197797
Broekaert, 1992, Antimicrobial peptides from Amaranthus caudatus seeds with sequence homology to the cysteine/glycine-rich domain of chitin-binding proteins, Biochemistry, 31, 4308, 10.1021/bi00132a023