A chemo-mechanical model coupled with thermal effect on the hollow core–shell electrodes in lithium-ion batteries
Tài liệu tham khảo
Chen, 2015, Structural design of graphene for use in electrochemical energy storage devices, Chem. Soc. Rev., 44, 6230, 10.1039/C5CS00147A
Plaimer, 2016, Evaluating the trade-off between mechanical and electrochemical performance of separators for lithium-ion batteries: methodology and application, J. Power Sources, 306, 702, 10.1016/j.jpowsour.2015.12.047
Chen, 1994, Thermal analysis of lithium polymer electrolyte batteries by a two dimensional model—thermal behaviour and design optimization, Electrochim. Acta, 39, 517, 10.1016/0013-4686(94)80095-2
Chen, 1996, Thermal analysis of lithium-ion batteries, J. Electrochem. Soc., 143, 2708, 10.1149/1.1837095
Doyle, 1996, Comparison of modeling predictions with experimental data from plastic lithium ion cells, J. Electrochem. Soc., 1890, 10.1149/1.1836921
Bernardi, 1985, A general energy balance for battery systems, J. Electrochem. Soc., 132, 5, 10.1149/1.2113792
Chen, 1993, Heat transfer phenomena in lithium/polymer-electrolyte batteries for electric vehicle application, J. Electrochem. Soc., 140, 1833, 10.1149/1.2220724
Chen, 1994, Three-dimensional thermal modeling of lithium-polymer batteries under galvanostatic discharge and dynamic power profile, J. Electrochem. Soc., 141, 2947, 10.1149/1.2059263
Song, 2000, Electrochemical-thermal model of lithium polymer batteries, J. Electrochem. Soc., 147, 2086, 10.1149/1.1393490
Ma, 2015, Failure modes of hollow core–shell structural active materials during the lithiation-delithiation process, J. Power Sources, 290, 114, 10.1016/j.jpowsour.2015.05.008
Wang, 2016, Interfacial adhesion energy of lithium-ion battery electrodes, Extreme Mech. Lett., 9, 226, 10.1016/j.eml.2016.08.002
Ma, 2013, Critical silicon-anode size for averting lithiation-induced mechanical failure of lithium-ion batteries, RSC Adv., 3, 7398, 10.1039/c3ra41052h
Hao, 2013, Tailoring diffusion-induced stresses of core–shell nanotube electrodes in lithium-ion batteries, J. Appl. Phys., 113, 013507, 10.1063/1.4772963
Hao, 2013, Diffusion-induced stresses of spherical core–shell electrodes in lithium-ion batteries: the effects of the shell and surface/interface stress, J. Electrochem. Soc., 160, A595, 10.1149/2.054304jes
Wang, 2002, Effect of chemical stress on diffusion in a hollow cylinder, J. Appl. Phys., 91, 9584, 10.1063/1.1477624
Ma, 2017, An electrochemical-irradiated plasticity model for metallic electrodes in lithium-ion batteries, Int. J. Plast., 88, 188, 10.1016/j.ijplas.2016.10.009
Ma, 2017, Softening by electrochemical reaction-induced dislocations in lithium-ion batteries, Scr. Mater., 127, 33, 10.1016/j.scriptamat.2016.08.032
Beaulieu, 2001, Colossal reversible volume changes in lithium alloys, Electrochem. Solid-State Lett., 4, A137, 10.1149/1.1388178
Kim, 2015, In situ TEM observation of electrochemical lithiation of sulfur confined within inner cylindrical pores of carbon nanotubes, Adv. Energy Mater., 5, 10.1002/aenm.201501306
Li, 2013, Lithium ion cell performance enhancement using aqueous LiFePO4 cathode dispersions and polyethyleneimine dispersant, J. Electrochem. Soc., 160, A201, 10.1149/2.037302jes
Zhao, 2012, Concurrent reaction and plasticity during initial lithiation of crystalline silicon in lithium-ion batteries, J. Electrochem. Soc., 159, A238, 10.1149/2.020203jes
McDowell, 2012, Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy, Adv. Mater., 24, 6034, 10.1002/adma.201202744
Yang, 2015, Strong kinetics-stress coupling in lithiation of Si and Ge anodes, Extreme Mech. Lett., 2, 1, 10.1016/j.eml.2014.11.008
Sandu, 2014, Surface coating mediated swelling and fracture of silicon nanowires during lithiation, ACS Nano, 8, 9427, 10.1021/nn503564r
Mukhopadhyay, 2014, Deformation and stress in electrode materials for Li-ion batteries, Prog. Mater. Sci., 63, 58, 10.1016/j.pmatsci.2014.02.001
Christensen, 2006, A mathematical model of stress generation and fracture in lithium manganese oxide, J. Electrochem. Soc., 153, A1019, 10.1149/1.2185287
Zhang, 2007, Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles, J. Electrochem. Soc., 154, A910, 10.1149/1.2759840
Zhang, 2008, Intercalation-induced stress and heat generation within single lithium-ion battery cathode particles, J. Electrochem. Soc., 155, A542, 10.1149/1.2926617
Xiao, 2010, A multi-scale approach for the stress analysis of polymeric separators in a lithium-ion battery, J. Power Sources, 195, 7649, 10.1016/j.jpowsour.2010.06.020
Guo, 2011, Single-particle model for a lithium-ion cell: thermal behavior, J. Electrochem. Soc., 158, A122, 10.1149/1.3521314
Gomadam, 2002, Mathematical modeling of lithium-ion and nickel battery systems, J. Power Sources, 110, 267, 10.1016/S0378-7753(02)00190-8
Shackelford, 2001
Srinivasan, 2003, Analysis of electrochemical and thermal behavior of Li-ion cells, J. Electrochem. Soc., 150, A98, 10.1149/1.1526512
Wu, 2012, The effect of battery design parameters on heat generation and utilization in a Li-ion cell, Electrochim. Acta, 83, 227, 10.1016/j.electacta.2012.07.081
Zhou, 2015, Effects of external mechanical loading on stress generation during lithiation in Li-ion battery electrodes, Electrochim. Acta, 185, 28, 10.1016/j.electacta.2015.10.097
Huang, 2013, Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries, Acta Mater., 61, 4354, 10.1016/j.actamat.2013.04.007
ValØen, 2005, Transport properties of LiPF6-based Li-ion battery electrolytes, J. Electrochem. Soc., 152, A882, 10.1149/1.1872737
Cheng, 2009, Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation, J. Power Sources, 190, 453, 10.1016/j.jpowsour.2009.01.021
Zhu, 2012, Cycling effects on surface morphology, nanomechanical and interfacial reliability of LiMn2O4 cathode in thin film lithium ion batteries, Electrochim. Acta, 68, 52, 10.1016/j.electacta.2012.02.032
Park, 2011, Numerical Simulation of Stress Evolution in lithium manganese dioxide particles due to coupled phase transition and intercalation, J. Electrochem. Soc., 158, A201, 10.1149/1.3526597
Xu, 2016, Mechanical interactions regulated kinetics and morphology of composite electrodes in Li-ion batteries, Extreme Mech. Lett., 8, 13, 10.1016/j.eml.2015.10.004