A chemo-mechanical model coupled with thermal effect on the hollow core–shell electrodes in lithium-ion batteries

Theoretical and Applied Mechanics Letters - Tập 7 - Trang 199-206 - 2017
Bin Hu1, Zengsheng Ma1, Weixin Lei1, Youlan Zou1, Chunsheng Lu2
1National-Provincial Laboratory of Special Function Thin Film Materials, and School of Materials Science and Engineering, Xiangtan University, Hunan 411105, China
2Department of Mechanical Engineering, Curtin University, Perth, WA 6845, Australia

Tài liệu tham khảo

Chen, 2015, Structural design of graphene for use in electrochemical energy storage devices, Chem. Soc. Rev., 44, 6230, 10.1039/C5CS00147A Plaimer, 2016, Evaluating the trade-off between mechanical and electrochemical performance of separators for lithium-ion batteries: methodology and application, J. Power Sources, 306, 702, 10.1016/j.jpowsour.2015.12.047 Chen, 1994, Thermal analysis of lithium polymer electrolyte batteries by a two dimensional model—thermal behaviour and design optimization, Electrochim. Acta, 39, 517, 10.1016/0013-4686(94)80095-2 Chen, 1996, Thermal analysis of lithium-ion batteries, J. Electrochem. Soc., 143, 2708, 10.1149/1.1837095 Doyle, 1996, Comparison of modeling predictions with experimental data from plastic lithium ion cells, J. Electrochem. Soc., 1890, 10.1149/1.1836921 Bernardi, 1985, A general energy balance for battery systems, J. Electrochem. Soc., 132, 5, 10.1149/1.2113792 Chen, 1993, Heat transfer phenomena in lithium/polymer-electrolyte batteries for electric vehicle application, J. Electrochem. Soc., 140, 1833, 10.1149/1.2220724 Chen, 1994, Three-dimensional thermal modeling of lithium-polymer batteries under galvanostatic discharge and dynamic power profile, J. Electrochem. Soc., 141, 2947, 10.1149/1.2059263 Song, 2000, Electrochemical-thermal model of lithium polymer batteries, J. Electrochem. Soc., 147, 2086, 10.1149/1.1393490 Ma, 2015, Failure modes of hollow core–shell structural active materials during the lithiation-delithiation process, J. Power Sources, 290, 114, 10.1016/j.jpowsour.2015.05.008 Wang, 2016, Interfacial adhesion energy of lithium-ion battery electrodes, Extreme Mech. Lett., 9, 226, 10.1016/j.eml.2016.08.002 Ma, 2013, Critical silicon-anode size for averting lithiation-induced mechanical failure of lithium-ion batteries, RSC Adv., 3, 7398, 10.1039/c3ra41052h Hao, 2013, Tailoring diffusion-induced stresses of core–shell nanotube electrodes in lithium-ion batteries, J. Appl. Phys., 113, 013507, 10.1063/1.4772963 Hao, 2013, Diffusion-induced stresses of spherical core–shell electrodes in lithium-ion batteries: the effects of the shell and surface/interface stress, J. Electrochem. Soc., 160, A595, 10.1149/2.054304jes Wang, 2002, Effect of chemical stress on diffusion in a hollow cylinder, J. Appl. Phys., 91, 9584, 10.1063/1.1477624 Ma, 2017, An electrochemical-irradiated plasticity model for metallic electrodes in lithium-ion batteries, Int. J. Plast., 88, 188, 10.1016/j.ijplas.2016.10.009 Ma, 2017, Softening by electrochemical reaction-induced dislocations in lithium-ion batteries, Scr. Mater., 127, 33, 10.1016/j.scriptamat.2016.08.032 Beaulieu, 2001, Colossal reversible volume changes in lithium alloys, Electrochem. Solid-State Lett., 4, A137, 10.1149/1.1388178 Kim, 2015, In situ TEM observation of electrochemical lithiation of sulfur confined within inner cylindrical pores of carbon nanotubes, Adv. Energy Mater., 5, 10.1002/aenm.201501306 Li, 2013, Lithium ion cell performance enhancement using aqueous LiFePO4 cathode dispersions and polyethyleneimine dispersant, J. Electrochem. Soc., 160, A201, 10.1149/2.037302jes Zhao, 2012, Concurrent reaction and plasticity during initial lithiation of crystalline silicon in lithium-ion batteries, J. Electrochem. Soc., 159, A238, 10.1149/2.020203jes McDowell, 2012, Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy, Adv. Mater., 24, 6034, 10.1002/adma.201202744 Yang, 2015, Strong kinetics-stress coupling in lithiation of Si and Ge anodes, Extreme Mech. Lett., 2, 1, 10.1016/j.eml.2014.11.008 Sandu, 2014, Surface coating mediated swelling and fracture of silicon nanowires during lithiation, ACS Nano, 8, 9427, 10.1021/nn503564r Mukhopadhyay, 2014, Deformation and stress in electrode materials for Li-ion batteries, Prog. Mater. Sci., 63, 58, 10.1016/j.pmatsci.2014.02.001 Christensen, 2006, A mathematical model of stress generation and fracture in lithium manganese oxide, J. Electrochem. Soc., 153, A1019, 10.1149/1.2185287 Zhang, 2007, Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles, J. Electrochem. Soc., 154, A910, 10.1149/1.2759840 Zhang, 2008, Intercalation-induced stress and heat generation within single lithium-ion battery cathode particles, J. Electrochem. Soc., 155, A542, 10.1149/1.2926617 Xiao, 2010, A multi-scale approach for the stress analysis of polymeric separators in a lithium-ion battery, J. Power Sources, 195, 7649, 10.1016/j.jpowsour.2010.06.020 Guo, 2011, Single-particle model for a lithium-ion cell: thermal behavior, J. Electrochem. Soc., 158, A122, 10.1149/1.3521314 Gomadam, 2002, Mathematical modeling of lithium-ion and nickel battery systems, J. Power Sources, 110, 267, 10.1016/S0378-7753(02)00190-8 Shackelford, 2001 Srinivasan, 2003, Analysis of electrochemical and thermal behavior of Li-ion cells, J. Electrochem. Soc., 150, A98, 10.1149/1.1526512 Wu, 2012, The effect of battery design parameters on heat generation and utilization in a Li-ion cell, Electrochim. Acta, 83, 227, 10.1016/j.electacta.2012.07.081 Zhou, 2015, Effects of external mechanical loading on stress generation during lithiation in Li-ion battery electrodes, Electrochim. Acta, 185, 28, 10.1016/j.electacta.2015.10.097 Huang, 2013, Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries, Acta Mater., 61, 4354, 10.1016/j.actamat.2013.04.007 ValØen, 2005, Transport properties of LiPF6-based Li-ion battery electrolytes, J. Electrochem. Soc., 152, A882, 10.1149/1.1872737 Cheng, 2009, Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation, J. Power Sources, 190, 453, 10.1016/j.jpowsour.2009.01.021 Zhu, 2012, Cycling effects on surface morphology, nanomechanical and interfacial reliability of LiMn2O4 cathode in thin film lithium ion batteries, Electrochim. Acta, 68, 52, 10.1016/j.electacta.2012.02.032 Park, 2011, Numerical Simulation of Stress Evolution in lithium manganese dioxide particles due to coupled phase transition and intercalation, J. Electrochem. Soc., 158, A201, 10.1149/1.3526597 Xu, 2016, Mechanical interactions regulated kinetics and morphology of composite electrodes in Li-ion batteries, Extreme Mech. Lett., 8, 13, 10.1016/j.eml.2015.10.004