A characterization of the innovations of first order autoregressive models

Springer Science and Business Media LLC - Tập 78 - Trang 219-225 - 2014
D. Moriña1,2,3, P. Puig2, J. Valero4
1Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
2Departament de Matemàtiques, Universitat Autònoma de Barcelona, Barcelona, Spain
3GRAAL - Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
4Escola Superior d’Agricultura de Barcelona, Universitat Politècnica de Catalunya, Barcelona, Spain

Tóm tắt

Suppose that $$Y_t$$ follows a simple AR(1) model, that is, it can be expressed as $$Y_t= \alpha Y_{t-1} + W_t$$ , where $$W_t$$ is a white noise with mean equal to $$\mu $$ and variance $$\sigma ^2$$ . There are many examples in practice where these assumptions hold very well. Consider $$X_t = e^{Y_t}$$ . We shall show that the autocorrelation function of $$X_t$$ characterizes the distribution of $$W_t$$ .

Tài liệu tham khảo

Abraham B, Balakrishna N (1999) Inverse Gaussian autoregressive models. J Time Ser Anal 50(6):605–618 Anderson TW, Lockhart RA, Stephens MA (2004) An omnibus test for the time series model AR(1). J Econom 118:111–127 Gaver DP, Lewis PAW (1980) First-order autoregressive gamma sequences and point processes. Adv Appl Probab 12:727–745 Granger CWJ, Newbold P (1976) Forecasting transformed series. J R Stat Soc B 2:189–203 Jayakumar K, Kalyanaraman K, Pillai RN (1995) \(\alpha \)-Laplace processes. Math Comput Model 22:109–116 Kuczma M (1968) Functional equations in a single variable. Polish Scientific Publishers, Warszawa Kuttykrishnan AP, Jayakumar K (2008) Bivariate semi \(\alpha \)-Laplace distribution and processes. Stat Pap 49:303–313 McKenzie E (1982) Product autoregression: a time-series characterization of the gamma distribution. J Appl Probab 19:463–468 Popović BV, Nadarajah S, Ristić MM (2013) A new non-linear AR(1) time series model having approximate beta marginals. Metrika 76:71–92 Sim CH (1994) Modelling non-normal first-order autoregressive time series. J Forecast 13:369–381