A characterization of the alpha-connections on the statistical manifold of normal distributions

Hitoshi Furuhata1, Jun-ichi Inoguchı2, Shimpei Kobayashi1
1Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan
2Institute of Mathematics, University of Tsukuba, Tsukuba, 305-8571, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Amari, S., Nagaoka, H.: Method of Information Geometry, Translations of mathematical monographs, vol. 191. American Mathematical Society, Providence (2000)

N. Bokan, N., Nomizu, K., Simon, U.: Affine hypersurfaces with parallel cubic forms. Tohoku Math. J. (2) 42(1), 101–108 (1990)

Bryant, R.L.: An introduction to Lie groups and symplectic geometry. Geometry and quantum field theory. IAS/Park City Math. Ser. 1, 5–181 (1995)

Dowty, J.G.: Chentsov’s theorem for exponential families. Inf. Geom. 1(1), 117–135 (2018)

Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry II, Interscience Tracts in Pure and Applied Math, vol. 15. Interscience Publishers, Geneva (1969)

Kobayashi, S.-P., Ohno, Y.: On a constant curvature statistical manifold. arXiv:2008.13394v2 (2020)

Lauritzen, S. L.: Statistical manifolds, In: Differential Geometry in Statistical Inference. IMS Lecture Notes: Monograph Series. vol. 10. Institute of Mathematical Statistics, Hayward, pp. 163–216 (1987)

Nomizu, K.: Invariant affine connections on homogeneous spaces. Am. J. Math. 76(1), 33–65 (1954)

Nomizu, K., Sasaki, T.: Affine Differential Geometry. Cambridge Univ Press, Cambridge (1994)

Opozda, B.: A sectional curvature for statistical structures. Linear Algebra Appl. 497, 134–161 (2016)

Shima, H.: The Geometry of Hessian Structures. World Scientific, Singapore (2007)

Tojo, K., Yoshino, T.: On a method to construct exponential families by representation theory. Lect. Notes Comput. Sci. 11712, 147–156 (2019)

Tojo, K., Yoshino, T.: A method to construct exponential families by representation theory. arXiv:1811.01394v3 (2018)