A characteristic‐based method for incompressible flows

International Journal for Numerical Methods in Fluids - Tập 19 Số 8 - Trang 667-685 - 1994
Dimitris Drikakis1, P. A. Govatsos2, Dimitris Papantonis2
1Lehrstuhl für Strömungsmechanik, Universität Erlangen-Nürnberg, Cauerstr. 4, W-91058 Erlangen, Germany
2National Technical University of Athens, Department of Mechanical Engineering, Laboratory of Hydraulic Turbomachines, PO Box 64070, 15710 Zografos Athens, Greece

Tóm tắt

AbstractA new characteristic‐based method for the solution of the 2D laminar incompressible Navier‐Stokes equations is presented. For coupling the continuity and momentum equations, the artificial compressibility formulation is employed. The primitives variables (pressure and velocity components) are defined as functions of their values on the characteristics. The primitives variables on the characteristics are calculated by an upwind diffencing scheme based on the sign of the local eigenvalue of the Jacobian matrix of the convective fluxes. The upwind scheme uses interpolation formulae of third‐order accuracy. The time discretization is obtained by the explicit Runge–Kutta method. Validation of the characteristic‐based method is performed on two different cases: the flow in a simple cascade and the flow over a backwardfacing step.

Từ khóa


Tài liệu tham khảo

10.1063/1.1761178

10.1080/10407787908913423

10.1201/9781482234213

10.1016/0021-9991(67)90037-X

10.2514/3.60663

10.1007/978-3-642-85952-6

10.1017/S0022112085001264

10.2514/3.9119

10.2514/3.9279

C.MerckleandM. A.Athavale ‘Time accurate unsteady incompressible flow algorithms based on artifical compressibility’ AIAA Paper 87–1137 1987.

10.1115/1.3243548

S. E.RogersandD.Kwak ‘An upwind differencing scheme for the steady state incompressible Navier–Stokes equations NASA TM 101051 1988.

10.2514/3.10382

10.1002/fld.1650141104

10.1002/fld.1650071208

Fletcher C. A. J., 1983, Computational Techniques for Fluid Dynamics

10.1016/0045-7930(91)90018-D

A.Eberle ‘3d Euler calculations using characteristic flux extrapolation’ AIAA Paper 85–0119 1985.

D.Drikakis ‘Development of upwind numerical methods in high speed aerodynamics’ Ph.D. Thesis National Technical University of Athens 1993.

10.1002/fld.1650120803

10.1016/0307-904X(93)90054-K

A.Jameson W.SchmidtandT.Turkel ‘Numerical solutions of the Euler equations by finite volume methods using Runge–Kutta time‐stepping schemes’ AIAA Paper 81–1259 1981.

Hirsch C., 1988, Numerical Computation of Internal and External Flows

A.Eberle ‘Characteristic flux averaging approach to the solution of Euler's equations’ VKI Lecture Ser. 1987–04 1987.

10.1007/978-3-642-96050-5

Chakravarthy S. R., 1988, High resolution upwind formulations for the Navier–Stokes equations

M. L.MansourandA.Hamed ‘Implicit solution of the incompressible Navier–Stokes equations in primitive variables’ AAIA Paper 88–0717 1988.

10.1016/0021-9991(90)90095-I

10.1017/S0022112083002839