Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Phương pháp phục hồi hình ảnh ký tự cho nhận dạng chữ Hán viết tay không bị ràng buộc
Tóm tắt
Mặc dù đã có những thành công với các phương pháp dựa trên cơ sở dữ liệu chữ viết tay có ràng buộc, việc nhận dạng chữ Hán viết tay không bị ràng buộc vẫn là một thách thức lớn. Một khó khăn trong việc nhận dạng chữ viết tay không bị ràng buộc là một số nét vẽ bị kết nối hoặc một số nét bị om. Trong bài báo này, chúng tôi đề xuất một phương pháp phục hồi hình ảnh ký tự cho việc nhận dạng chữ Hán viết tay không bị ràng buộc. Trong phương pháp này, hình ảnh ký tự quan sát được mô hình hóa như là sự kết hợp giữa hình ảnh ký tự lý tưởng với hai loại hình ảnh nhiễu: hình ảnh nhiễu nét bị om và hình ảnh nhiễu nét được thêm vào. Để giữ lại các đặc điểm gradient gốc, việc phục hồi được thực hiện trên các đặc điểm gradient. Các đặc điểm được ước lượng sau đó được sử dụng để phân biệt những ký tự tương tự. Để chứng minh tính hiệu quả của phương pháp đề xuất, chúng tôi đã mở rộng một số bộ phân loại hiện đại dựa trên các đặc điểm ước lượng. Kết quả thực nghiệm cho thấy các bộ phân loại mở rộng vượt trội hơn so với các bộ phân loại hiện đại ban đầu. Điều này chứng tỏ rằng các đặc điểm ước lượng là hữu ích để cải thiện thêm tỷ lệ nhận diện.
Từ khóa
#nhận dạng chữ Hán #viết tay không bị ràng buộc #phục hồi hình ảnh ký tự #đặc điểm gradient #bộ phân loạiTài liệu tham khảo
citation_journal_title=IEEE Trans. Pattern Anal. Mach. Intell.; citation_title=Modified quadratic discriminant functions and the application to Chinese character recognition; citation_author=F Kimura, K Takashina, S Tsuruoka, Y Miyake; citation_volume=9; citation_issue=1; citation_publication_date=1987; citation_pages=149-153; citation_doi=10.1109/TPAMI.1987.4767881; citation_id=CR1
citation_journal_title=Pattern Recognit.; citation_title=High accuracy handwritten Chinese character recognition using LDA-based compound distances; citation_author=T-F Gao, C-L Liu; citation_volume=41; citation_issue=11; citation_publication_date=2008; citation_pages=3442-3451; citation_doi=10.1016/j.patcog.2008.04.011; citation_id=CR2
citation_journal_title=IEEE Trans. Pattern Anal. Mach. Intell.; citation_title=Normalization-cooperated gradient feature extraction for handwritten character recognition; citation_author=C-L Liu; citation_volume=29; citation_issue=8; citation_publication_date=2007; citation_pages=1465-1469; citation_doi=10.1109/TPAMI.2007.1090; citation_id=CR3
Liu, C.-L.: High accuracy handwritten chinese character recognition using quadratic classifiers with discriminative feature extraction. In: Proceedings of the International Conference on Pattern Recognition, pp. 942–945 (2006)
Liu, C.-L.: Handwritten Chinese character recognition: effects of shape normalization and feature extraction. In: Doermann, D., Jaeger, S. (eds.) Arabic and Chinese Handwriting Recognition. Lecture Notes in Computer Science, vol. 4768, pp. 104–128. Springer, Berlin, Heidelberg (2008)
Tsukumo, J., Tanaka, H.: Classification of handprinted Chinese characters using nonlinear normalization and correlation methods. In: Proceedings of the Ninth International Conference on Pattern Recognition, pp. 168–171 (1988)
citation_journal_title=Pattern Recognit.; citation_title=A nonlinear normalization method for handprinted Kanji character recognition-line density equalization; citation_author=H Yamada, K Yamamoto, T Saito; citation_volume=23; citation_issue=9; citation_publication_date=1990; citation_pages=1023-1029; citation_doi=10.1016/0031-3203(90)90110-7; citation_id=CR7
Horiuchi, T., Haruki, R., Yamada, H., Yamamoto, K.: Two-dimensional extension of nonlinear normalization method using line density for character recognition. In: Proceedings of the 4th International Conference on Document Analysis and Recognition, pp. 511–514 (1997)
citation_journal_title=Pattern Recognit.; citation_title=Pseudo two-dimensional shape normalization methods for handwritten Chinese character recognition; citation_author=C-L Liu, K Marukawa; citation_volume=38; citation_issue=12; citation_publication_date=2005; citation_pages=2242-2255; citation_doi=10.1016/j.patcog.2005.04.019; citation_id=CR9
Liu, C.-L., Sako, H., Fujisawa, H.: Handwritten Chinese character recognition: alternatives to nonlinear normalization. In: Proceedings of the Seventh International Conference on Document Analysis and Recognition, pp. 524–528 (2003)
Liu, C.-L., Fujisawa, H.: Classification and learning methods for character recognition: advances and remaining problems. In: Marinai, S., Fujisawa, H. (eds.) Machine Learning in Document Analysis and Recognition. Studies in Computational Intelligence, vol. 90, pp. 139–161. Springer, Berlin, Heidelberg (2008)
Leung, K.C., Leung, C.H.: Recognition of handwritten Chinese characters by combining regularization, Fisher’s discriminant and distorted sample generation. In: Proceedings of the 10th International Conference on Document Analysis and Recognition, pp. 1026–1030 (2009)
citation_journal_title=Pattern Recognit. Lett.; citation_title=Classification of handprinted Kanji characters by the structured segment matching method; citation_author=Y Yamashita, K Higuchi, Y Yamada, Y Haga; citation_volume=1; citation_issue=5; citation_publication_date=1983; citation_pages=475-479; citation_doi=10.1016/0167-8655(83)90089-2; citation_id=CR13
citation_journal_title=IBM J. Res. Dev.; citation_title=Moment normalization of handprinted character; citation_author=RG Casey; citation_volume=14; citation_publication_date=1970; citation_pages=548-557; citation_doi=10.1147/rd.145.0548; citation_id=CR14
citation_journal_title=Pattern Recognit.; citation_title=Feature extraction methods for character recognition—a survey; citation_author=OD Trier, AK Jain, T Taxt; citation_volume=29; citation_issue=4; citation_publication_date=1996; citation_pages=641-662; citation_doi=10.1016/0031-3203(95)00118-2; citation_id=CR15
citation_journal_title=Trans. IEICE Jpn.; citation_title=An improvement of correlation method for character recognition; citation_author=M Yasuda, H Fujisawa; citation_volume=J62–D; citation_issue=3; citation_publication_date=1979; citation_pages=217-224; citation_id=CR16
citation_journal_title=Pattern Recognit.; citation_title=Handwritten digit recognition: investigation of normalization and feature extraction techniques; citation_author=C-L Liu, K Nakashima, H Sako, H Fujisawa; citation_volume=37; citation_issue=2; citation_publication_date=2004; citation_pages=265-279; citation_doi=10.1016/S0031-3203(03)00224-3; citation_id=CR17
citation_journal_title=Pattern Recognit.; citation_title=Gradient-based contour encoder for character recognition; citation_author=G Srikantan, SW Lam, SN Srihari; citation_volume=29; citation_issue=7; citation_publication_date=1996; citation_pages=1147-1160; citation_doi=10.1016/0031-3203(95)00146-8; citation_id=CR18
citation_journal_title=Pattern Recognit.; citation_title=Handwritten numeral recognition using gradient and curvature of gray scale image; citation_author=M Shi, Y Fujisawa, T Wakabayashi, F Kimura; citation_volume=35; citation_issue=10; citation_publication_date=2002; citation_pages=2051-2059; citation_doi=10.1016/S0031-3203(01)00203-5; citation_id=CR19
Ding, K., Liu, Z.B., Jin, L.W., Zhu, X.H.: A comparative study of Gabor feature and gradient feature for handwritten Chinese character recognition. In: International Conference on Wavelet Analysis and Pattern Recognition, pp. 1182–1186 (2007)
Hamanaka, M., Yamada, K., Tsukumo, J.: Normalization-cooperated feature extraction method for handprinted Kanji character recognition. In: Proceedings of the Third International Workshop on Frontiers of Handwriting Recognition, pp. 343–348 (1993)
citation_journal_title=Pattern Recognit.; citation_title=Improvement of handwritten Japanese character recognition using weighted direction code histogram; citation_author=F Kimura, T Wakabayashi, S Tsuruoka, Y Miyake; citation_volume=30; citation_issue=8; citation_publication_date=1997; citation_pages=1329-1337; citation_doi=10.1016/S0031-3203(96)00153-7; citation_id=CR22
citation_journal_title=IEEE Trans. Pattern Anal. Mach. Intell.; citation_title=A handwritten character recognition system using directional element feature and asymmetric Mahalanobis distance; citation_author=N Kato, M Suzuki, S Omachi, H Aso, Y Nemoto; citation_volume=21; citation_issue=3; citation_publication_date=1999; citation_pages=258-262; citation_doi=10.1109/34.754617; citation_id=CR23
Kawatani, T.: Handwritten Kanji recognition with determinant normalized quadratic discriminant function. In: Proceedings of the International Conference on Pattern Recognition, pp. 343–346 (2000)
Liu, C.-L., Sako, H., Fujisawa, H.: Performance evaluation of pattern classifiers for handwritten character recognition. Int. J. Doc. Anal. Recognit. 4(3), 191–204 (2002)
Suzuki, M., Ohmachi, S., Kato, N., Aso, H., Nemoto, Y.: A discrimination method of similar characters using compound Mahalanobis function. Trans. IEICE Jpn. vJ80-D-II(10), 2752–2760 (1997)
Gao, T.F., Liu, C.-L.: LDA-based compound distance for handwritten Chinese character recognition. In: Proceedings of the Ninth International Conference on Document Analysis and Recognition, pp. 904–908 (2007)
citation_journal_title=Pattern Recognit.; citation_title=Recognition of handwritten Chinese characters by critical region analysis; citation_author=KC Leung, CH Leung; citation_volume=43; citation_issue=3; citation_publication_date=2009; citation_pages=949-961; citation_doi=10.1016/j.patcog.2009.09.001; citation_id=CR28
Xu, B., Huang, K.Z., Liu, C.-L.: Similar handwritten Chinese characters recognition by critical region selection based on average symmetric uncertainty. In: Proceedings of the 12th International Conference on Frontiers in Handwriting Recognition, pp. 527–532 (2010)
Shao, Y.X., Wang, C.H., Xiao, B.H., Zhang, R.G., Zhang, Y.: Multiple instance learning based method for similar handwritten Chinese characters discrimination. In: International Conference on Document Analysis and Recognition, pp. 1002–1006 (2011)
citation_journal_title=Int. J. Doc. Anal. Recognit.; citation_title=Discrimination of similar characters using nonlinear normalization based on regional importance measure; citation_author=S Ryu, I-J Kim; citation_volume=17; citation_issue=1; citation_publication_date=2014; citation_pages=79-89; citation_doi=10.1007/s10032-013-0206-3; citation_id=CR31
citation_journal_title=Int. J. Doc. Anal. Recognit.; citation_title=Fast self-generation voting for handwritten Chinese character recognition; citation_author=YX Shao, CH Wang, BH Xiao; citation_volume=16; citation_issue=4; citation_publication_date=2013; citation_pages=413-424; citation_doi=10.1007/s10032-012-0194-8; citation_id=CR32
Liu, C.-L., Yin, F., Wang, D.H., Wang, Q.F.: CASIA online and offline chinese handwriting databases. In: International Conference on Document Analysis and Recognition, pp. 37–41 (2011)
citation_journal_title=Pattern Recognit.; citation_title=Online and offline handwritten Chinese character recognition: benchmarking on new databases; citation_author=C-L Liu, F Yin, DH Wang, QF Wang; citation_volume=46; citation_issue=1; citation_publication_date=2013; citation_pages=155-162; citation_doi=10.1016/j.patcog.2012.06.021; citation_id=CR34
citation_journal_title=Mach. Learn.; citation_title=Support-vector networks; citation_author=C Cortes, V Vapnik; citation_volume=20; citation_issue=3; citation_publication_date=1995; citation_pages=273-297; citation_id=CR35
Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011). Software available at
http://www.csie.ntu.edu.tw/cjlin/libsvm
Lee, S.-W., Park, J.-S., Tang, Y.: Performance evaluation of nonlinear shape normalization methods for the recognition of large-set handwritten characters. In: Proceedings of the Second International Conference on Document Analysis and Recognition, pp. 402–407 (1993)
citation_title=The Analysis of Contingency Tables; citation_publication_date=1977; citation_id=CR38; citation_author=BS Everitt; citation_publisher=Chapman and Hall
citation_title=Statistical Methods; citation_publication_date=1989; citation_id=CR39; citation_author=GW Snedecor; citation_author=WG Cochran; citation_publisher=Iowa State University Press
Liu, C.-L., Mine, R., Koga, M.: Building compact classifier for large character set recognition using discriminative feature extraction. In: Proceedings of the International Conference on Document Analysis and Recognition, pp. 846–850 (2005)
citation_journal_title=Pattern Recognit.; citation_title=Regularized margin-based conditional log-likelihood loss for prototype learning; citation_author=X-B Jin, C-L Liu, X Hou; citation_volume=43; citation_issue=7; citation_publication_date=2010; citation_pages=2428-2438; citation_doi=10.1016/j.patcog.2010.01.013; citation_id=CR41
citation_journal_title=Pattern Recognit.; citation_title=Evaluation of weighted Fisher criteria for large category dimensionality reduction in application to Chinese handwriting recognition; citation_author=X-Y Zhang, C-L Liu; citation_volume=46; citation_issue=9; citation_publication_date=2013; citation_pages=2599-2611; citation_doi=10.1016/j.patcog.2013.01.036; citation_id=CR42
Ciresan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for image classification. In: Proceedings of the 25th IEEE Conference on Computer Vision and Pattern Recognition, pp. 3642–3649 (2012)