A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional Kalman filter

Communications in Nonlinear Science and Numerical Simulation - Tập 14 Số 3 - Trang 863-879 - 2009
A. Kiani-B1, Kia Fallahi2, Naser Pariz1, Henry Leung2
1Advanced Control and Nonlinear Laboratory, Electrical Engineering Department, Ferdowsi University of Mashhad, Mashhad 91775-1111, Iran
2Electrical and Computer Engineering Department, University of Calgary, Alberta, Canada T2N 1N4

Tóm tắt

Từ khóa


Tài liệu tham khảo

Hifler, 2000

Riewe, 1997, Mechanics with fractional derivatives, Phys Rev, 3581

Podlubny, 2002, Geometric and physical interpretation of fractional integral and fractional derivatives, J Fract Calc, 5, 367

Ben Adda, 1997, Geometric interpretation of the fractional derivative, J Fract Calc, 21

Bullock, 1988, A geometric interpretation of the Riemann–Stieltjes integral, Am Math Mon, 95, 448, 10.2307/2322483

Bologna, 2003

Vinagre BM, Monje CA, Calderson AJ. Fractional order system and fractional order control actions, FC application in automatic control. Las Vegas, USA; December 9, 2002. p. 3690–700.

Loverro, 2004

Debnath, 2002

Kilbas, 2006, vol. 207

Heidari-Bateni, 1994, A chaotic direct-sequence spread spectrum communication system, IEEE Trans Commun, 42, 1524, 10.1109/TCOMM.1994.582834

Satish, 2005, Chaos based spread spectrum image steganography, 587

Kolumban, 1997, The role of synchronization in digital communications using chaos—part I. Fundamentals of digital communications, IEEE Trans Circ Syst I, 44, 927, 10.1109/81.633882

Kolumban, 1998, The role of synchronization in digital communications using chaos—part II. Chaotic modulation and chaotic synchronization, IEEE Trans Circ Syst I, 45, 1129, 10.1109/81.735435

Kolumban, 2002, The role of synchronization in digital communications using chaos—part III. Performance bounds for correlation receivers, IEEE Trans Circ Syst I, 47, 1673

Dachselt, 2001, Chaos and cryptography, IEEE Trans Circ Syst I, 48, 1498, 10.1109/TCSI.2001.972857

Azemi A, Raoufi R, Fallahi K, Hosseini-Khayat S. A sliding-mode adaptive observer chaotic communication scheme. In: 13th Iranian conference on electrical engineering (ICEE2005), vol. 2, Zanjan, Iran; May 10–12, 2005.

Fallahi K, Khoshbin H. A new communication scheme using one-dimensional chaotic maps. In: 15th Iranian conference on electrical engineering (ICEE2007), Iran; May, 2007.

Ruan H, Zhai T, Yaz EE. A chaotic secure chaotic communication scheme with extended Kalman filter based parameter estimation. In: Proceeding of IEEE conference on control applications, vol. 1; June 2003. p. 404–8.

Murali, 2001, Digital signal transmission with cascaded heterogeneous chaotic systems, Phys Rev E, 63, 016217, 10.1103/PhysRevE.63.016217

Alvarez, 1999, Chaotic cryptosystems, Int J Bifurcat Chaos, 332

Short, 1996, Unmasking a modulated chaotic communication scheme, Int J Bifurcat Chaos, 6, 367, 10.1142/S0218127496000114

Perez, 1995, Extracting messages masked by chaos, Phys Rev Lett, 74, 1970, 10.1103/PhysRevLett.74.1970

Yang, 1997, Cryptography based on chaotic systems, IEEE Trans Circ Syst—I: Fundamen Appl, 44, 469, 10.1109/81.572346

Fallahi, 2008, An application of Chen system for secure chaotic communication based on extended Kalman filter and multi-shift cipher algorithm, Commun Nonlinear Sci Numer Simul, 13, 763, 10.1016/j.cnsns.2006.07.006

Oldham, 1974

Loverro, 2004

Li, 2003, Chaos in the fractional order Chen system and its control, Chaos Solitons Fract, 22, 549, 10.1016/j.chaos.2004.02.035

Diethelm, 2004, Detailed error analysis for a fractional Adams method, Numer Algorithms, 36, 31, 10.1023/B:NUMA.0000027736.85078.be

Li, 2004, Chaos in Chen’s system with a fractional order, Chaos Solitons Fract, 22, 443, 10.1016/j.chaos.2004.02.013

Diethelm, 2002, A predictor–corrector approach for the numerical solution of fractional differential equations, Nonlinear Dyn, 29, 3, 10.1023/A:1016592219341

Diethelm, 1997, An algorithm for the numerical solution of differential equations of fractional order, Elec Trans Numer Anal, 5, 1

Diethelm, 2002, Analysis of fractional differential equations, Int J Math Anal Appl, 265, 229, 10.1006/jmaa.2000.7194

Sierociuk, 2006, Fractional Kalman filter algorithm for the states, parameters and order of fractional system estimation, Int J Appl Math Comput Sci, 16, 129

Tavazoei, 2007, A necessary condition for double scroll attractor existence in fractional order systems, Phys Lett A, 10.1016/j.physleta.2007.05.081

Ostalczyk P. Fractional-order backward difference equivalent forms. Part I—Horner’s form. In: Proceedings of the first IFAC workshop fractional differentiation and its applications, FDA’04, Enseirb, Bordeaux, France. p. 342–7.