A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional Kalman filter
Tóm tắt
Từ khóa
Tài liệu tham khảo
Hifler, 2000
Riewe, 1997, Mechanics with fractional derivatives, Phys Rev, 3581
Podlubny, 2002, Geometric and physical interpretation of fractional integral and fractional derivatives, J Fract Calc, 5, 367
Ben Adda, 1997, Geometric interpretation of the fractional derivative, J Fract Calc, 21
Bullock, 1988, A geometric interpretation of the Riemann–Stieltjes integral, Am Math Mon, 95, 448, 10.2307/2322483
Bologna, 2003
Vinagre BM, Monje CA, Calderson AJ. Fractional order system and fractional order control actions, FC application in automatic control. Las Vegas, USA; December 9, 2002. p. 3690–700.
Loverro, 2004
Debnath, 2002
Kilbas, 2006, vol. 207
Heidari-Bateni, 1994, A chaotic direct-sequence spread spectrum communication system, IEEE Trans Commun, 42, 1524, 10.1109/TCOMM.1994.582834
Satish, 2005, Chaos based spread spectrum image steganography, 587
Kolumban, 1997, The role of synchronization in digital communications using chaos—part I. Fundamentals of digital communications, IEEE Trans Circ Syst I, 44, 927, 10.1109/81.633882
Kolumban, 1998, The role of synchronization in digital communications using chaos—part II. Chaotic modulation and chaotic synchronization, IEEE Trans Circ Syst I, 45, 1129, 10.1109/81.735435
Kolumban, 2002, The role of synchronization in digital communications using chaos—part III. Performance bounds for correlation receivers, IEEE Trans Circ Syst I, 47, 1673
Azemi A, Raoufi R, Fallahi K, Hosseini-Khayat S. A sliding-mode adaptive observer chaotic communication scheme. In: 13th Iranian conference on electrical engineering (ICEE2005), vol. 2, Zanjan, Iran; May 10–12, 2005.
Fallahi K, Khoshbin H. A new communication scheme using one-dimensional chaotic maps. In: 15th Iranian conference on electrical engineering (ICEE2007), Iran; May, 2007.
Ruan H, Zhai T, Yaz EE. A chaotic secure chaotic communication scheme with extended Kalman filter based parameter estimation. In: Proceeding of IEEE conference on control applications, vol. 1; June 2003. p. 404–8.
Murali, 2001, Digital signal transmission with cascaded heterogeneous chaotic systems, Phys Rev E, 63, 016217, 10.1103/PhysRevE.63.016217
Alvarez, 1999, Chaotic cryptosystems, Int J Bifurcat Chaos, 332
Short, 1996, Unmasking a modulated chaotic communication scheme, Int J Bifurcat Chaos, 6, 367, 10.1142/S0218127496000114
Perez, 1995, Extracting messages masked by chaos, Phys Rev Lett, 74, 1970, 10.1103/PhysRevLett.74.1970
Yang, 1997, Cryptography based on chaotic systems, IEEE Trans Circ Syst—I: Fundamen Appl, 44, 469, 10.1109/81.572346
Fallahi, 2008, An application of Chen system for secure chaotic communication based on extended Kalman filter and multi-shift cipher algorithm, Commun Nonlinear Sci Numer Simul, 13, 763, 10.1016/j.cnsns.2006.07.006
Oldham, 1974
Loverro, 2004
Li, 2003, Chaos in the fractional order Chen system and its control, Chaos Solitons Fract, 22, 549, 10.1016/j.chaos.2004.02.035
Diethelm, 2004, Detailed error analysis for a fractional Adams method, Numer Algorithms, 36, 31, 10.1023/B:NUMA.0000027736.85078.be
Li, 2004, Chaos in Chen’s system with a fractional order, Chaos Solitons Fract, 22, 443, 10.1016/j.chaos.2004.02.013
Diethelm, 2002, A predictor–corrector approach for the numerical solution of fractional differential equations, Nonlinear Dyn, 29, 3, 10.1023/A:1016592219341
Diethelm, 1997, An algorithm for the numerical solution of differential equations of fractional order, Elec Trans Numer Anal, 5, 1
Diethelm, 2002, Analysis of fractional differential equations, Int J Math Anal Appl, 265, 229, 10.1006/jmaa.2000.7194
Sierociuk, 2006, Fractional Kalman filter algorithm for the states, parameters and order of fractional system estimation, Int J Appl Math Comput Sci, 16, 129
Tavazoei, 2007, A necessary condition for double scroll attractor existence in fractional order systems, Phys Lett A, 10.1016/j.physleta.2007.05.081
Ostalczyk P. Fractional-order backward difference equivalent forms. Part I—Horner’s form. In: Proceedings of the first IFAC workshop fractional differentiation and its applications, FDA’04, Enseirb, Bordeaux, France. p. 342–7.