A chaotic and hybrid gray wolf-whale algorithm for solving continuous optimization problems

Progress in Artificial Intelligence - Tập 10 Số 3 - Trang 349-374 - 2021
Kayvan Asghari1, Mohammad Masdari1, Farhad Soleimanian Gharehchopogh1, Rahim Saneifard2
1Department of Computer Engineering, Urmia Branch, Islamic Azad University, Urmia, Iran
2Department of Applied Mathematics, Urmia Branch Islamic Azad University Urmia Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alba, E., Dorronsoro, B.: The exploration/exploitation tradeoff in dynamic cellular genetic algorithms. IEEE Trans. Evol. Comput. 9(2), 126–142 (2005). https://doi.org/10.1109/TEVC.2005.843751

Song, H., Triguero, I., Özcan, E.: A review on the self and dual interactions between machine learning and optimisation. Progress Artificial Intell. 8(2), 143–165 (2019). https://doi.org/10.1007/s13748-019-00185-z

Mirjalili, S., Lewis, A.: The Whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016). https://doi.org/10.1016/j.advengsoft.2016.01.008

Gandomi, A.H., Alavi, A.H.: Krill herd: A new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul. 17(12), 4831–4845 (2012). https://doi.org/10.1016/j.cnsns.2012.05.010

Holland, J.H.: Genetic algorithms. Sci. Am. 267(1), 66–73 (1992)

Eberhart, R., Kennedy, J.: Particle swarm optimization, proceeding of IEEE International Conference on Neural Network. Perth, Australia, 1942–1948 (1995). https://doi.org/10.1109/ICNN.1995.488968

Mirjalili, S.: The ant lion optimizer. Adv. Eng. Softw. 83, 80–98 (2015). https://doi.org/10.1016/j.advengsoft.2015.01.010

Karaboga, D., Gorkemli, B., Ozturk, C., Karaboga, N.: A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artif. Intell. Rev. 42(1), 21–57 (2014). https://doi.org/10.1007/s10462-012-9328-0

Anita, Yadav, A.: AEFA: Artificial electric field algorithm for global optimization. Swarm and Evolutionary Computation 48, 93–108 (2019). https://doi.org/10.1016/j.swevo.2019.03.013

Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H., Mirjalili, S.M.: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–191 (2017). https://doi.org/10.1016/j.advengsoft.2017.07.002

Garg, H.: An efficient biogeography based optimization algorithm for solving reliability optimization problems. Swarm Evol. Comput. 24, 1–10 (2015). https://doi.org/10.1016/j.swevo.2015.05.001

Samareh Moosavi, S.H., Khatibi Bardsiri, V.: Satin bowerbird optimizer: A new optimization algorithm to optimize ANFIS for software development effort estimation. Eng. Appl. Artif. Intell. 60, 1–15 (2017). https://doi.org/10.1016/j.engappai.2017.01.006

Samareh Moosavi, S.H., Bardsiri, V.K.: Poor and rich optimization algorithm: A new human-based and multi populations algorithm. Eng. Appl. Artif. Intell. 86, 165–181 (2019). https://doi.org/10.1016/j.engappai.2019.08.025

Kaveh, A., Bakhshpoori, T.: Water evaporation optimization: A novel physically inspired optimization algorithm. Comput. Struct. 167, 69–85 (2016). https://doi.org/10.1016/j.compstruc.2016.01.008

Mirjalili, S., Mirjalili, S.M., Hatamlou, A.: Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput. Appl. 27(2), 495–513 (2016). https://doi.org/10.1007/s00521-015-1870-7

Wang, G.-G.: Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Memetic Comput.10(2), 151–164 (2018). https://doi.org/10.1007/s12293-016-0212-3

Saremi, S., Mirjalili, S., Lewis, A.: Grasshopper optimisation algorithm: Theory and application. Adv. Eng. Softw. 105, 30–47 (2017). https://doi.org/10.1016/j.advengsoft.2017.01.004

Sulaiman, M.H., Mustaffa, Z., Saari, M.M., Daniyal, H.: Barnacles mating optimizer: A new bio-inspired algorithm for solving engineering optimization problems. Eng. Appl. Artif. Intell. 87, 103330 (2020). https://doi.org/10.1016/j.engappai.2019.103330

Shayanfar, H., Gharehchopogh, F.S.: Farmland fertility: A new metaheuristic algorithm for solving continuous optimization problems. Appl. Soft Comput. 71, 728–746 (2018). https://doi.org/10.1016/j.asoc.2018.07.033

Gharehchopogh, F.S., Shayanfar, H., Gholizadeh, H.: A comprehensive survey on symbiotic organisms search algorithms. Artif. Intell. Rev. 53(3), 2265–2312 (2020). https://doi.org/10.1007/s10462-019-09733-4

Cheng, M.-Y., Prayogo, D.: Symbiotic organisms search: A new metaheuristic optimization algorithm. Comput. Struct. 139, 98–112 (2014). https://doi.org/10.1016/j.compstruc.2014.03.007

Arora, S., Singh, S.: Butterfly optimization algorithm: a novel approach for global optimization. Soft. Comput. 23(3), 715–734 (2019). https://doi.org/10.1007/s00500-018-3102-4

Heidari, A.A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., Chen, H.: Harris hawks optimization: Algorithm and applications. Futur. Gener. Comput. Syst. 97, 849–872 (2019). https://doi.org/10.1016/j.future.2019.02.028

Mortazavi, A., Toğan, V., Nuhoğlu, A.: Interactive search algorithm: A new hybrid metaheuristic optimization algorithm. Eng. Appl. Artif. Intell. 71, 275–292 (2018). https://doi.org/10.1016/j.engappai.2018.03.003

Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014). https://doi.org/10.1016/j.advengsoft.2013.12.007

Mafarja, M.M., Mirjalili, S.: Hybrid Whale optimization algorithm with simulated annealing for feature selection. Neurocomputing 260, 302–312 (2017). https://doi.org/10.1016/j.neucom.2017.04.053

Mohammadzadeh, H., Gharehchopogh, F.S.: A novel hybrid whale optimization algorithm with flower pollination algorithm for feature selection: Case study Email spam detection. Computational Intelligence n/a(n/a) (2020). https://doi.org/10.1111/coin.12397

Jadhav, A.N., Gomathi, N.: WGC: Hybridization of exponential grey wolf optimizer with whale optimization for data clustering. Alex. Eng. J. (2017). https://doi.org/10.1016/j.aej.2017.04.013

Rahnema, N., Gharehchopogh, F.S.: An improved artificial bee colony algorithm based on whale optimization algorithm for data clustering. Multimedia Tools Appl. (2020). https://doi.org/10.1007/s11042-020-09639-2

Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997). https://doi.org/10.1109/4235.585893

Nenavath, H., Jatoth, R.K.: Hybridizing sine cosine algorithm with differential evolution for global optimization and object tracking. Appl. Soft Comput. 62, 1019–1043 (2018). https://doi.org/10.1016/j.asoc.2017.09.039

Garg, H.: A hybrid GSA-GA algorithm for constrained optimization problems. Inf. Sci. 478, 499–523 (2019). https://doi.org/10.1016/j.ins.2018.11.041

Garg, H.: A hybrid PSO-GA algorithm for constrained optimization problems. Appl. Math. Comput. 274, 292–305 (2016). https://doi.org/10.1016/j.amc.2015.11.001

Harish, G.: A Hybrid GA-GSA algorithm for optimizing the performance of an industrial system by utilizing uncertain data. In: Pandian, V. (ed.) Handbook of Research on Artificial Intelligence Techniques and Algorithms, pp. 620–654. IGI Global, Hershey, PA, USA (2015)

Li, Z., Wang, W., Yan, Y., Li, Z.: PS–ABC: A hybrid algorithm based on particle swarm and artificial bee colony for high-dimensional optimization problems. Expert Syst. Appl. 42(22), 8881–8895 (2015). https://doi.org/10.1016/j.eswa.2015.07.043

Beigvand, S.D., Abdi, H., La Scala, M.: Hybrid gravitational search algorithm-particle swarm optimization with time vvarying acceleration coefficients for large scale CHPED problem. Energy 126, 841–853 (2017). https://doi.org/10.1016/j.energy.2017.03.054

Kellert, S.H.: In the wake of chaos: Unpredictable order in dynamical systems. University of Chicago press, (1994)

Yang, D., Li, G., Cheng, G.: On the efficiency of chaos optimization algorithms for global optimization. Chaos, Solitons Fractals 34(4), 1366–1375 (2007). https://doi.org/10.1016/j.chaos.2006.04.057

Alatas, B., Akin, E., Ozer, A.B.: Chaos embedded particle swarm optimization algorithms. Chaos, Solitons Fractals 40(4), 1715–1734 (2009). https://doi.org/10.1016/j.chaos.2007.09.063

Alatas, B.: Chaotic harmony search algorithms. Appl. Math. Comput. 216(9), 2687–2699 (2010). https://doi.org/10.1016/j.amc.2010.03.114

Alatas, B.: Chaotic bee colony algorithms for global numerical optimization. Expert Syst. Appl. 37(8), 5682–5687 (2010). https://doi.org/10.1016/j.eswa.2010.02.042

Talatahari, S., Farahmand Azar, B., Sheikholeslami, R., Gandomi, A.H.: Imperialist competitive algorithm combined with chaos for global optimization. Commun. Nonlinear Sci. Numer. Simul. 17(3), 1312–1319 (2012). https://doi.org/10.1016/j.cnsns.2011.08.021

Gandomi, A.H., Yang, X.-S., Talatahari, S., Alavi, A.H.: Firefly algorithm with chaos. Commun. Nonlinear Sci. Numer. Simul. 18(1), 89–98 (2013). https://doi.org/10.1016/j.cnsns.2012.06.009

Wang, G.-G., Guo, L., Gandomi, A.H., Hao, G.-S., Wang, H.: Chaotic krill herd algorithm. Inf. Sci. 274, 17–34 (2014). https://doi.org/10.1016/j.ins.2014.02.123

Arora, S., Singh, S.: An improved butterfly optimization algorithm with chaos. J. Intell. Fuzzy Syst. 32(1), 1079–1088 (2017). https://doi.org/10.3233/JIFS-16798

Kohli, M., Arora, S.: Chaotic grey wolf optimization algorithm for constrained optimization problems. J. Comput. Des. Eng. (2017). https://doi.org/10.1016/j.jcde.2017.02.005

Kaur, G., Arora, S.: Chaotic Whale optimization algorithm. J. Comput. Des. Eng. (2018). https://doi.org/10.1016/j.jcde.2017.12.006

Majhi, S.K., Mishra, A., Pradhan, R.: A chaotic salp swarm algorithm based on quadratic integrate and fire neural model for function optimization. Progress Artif. Intell. 8(3), 343–358 (2019). https://doi.org/10.1007/s13748-019-00184-0

Gandomi, A.H., Yang, X.-S.: Chaotic bat algorithm. J. Comput. Sci. 5(2), 224–232 (2014). https://doi.org/10.1016/j.jocs.2013.10.002

Coelho, L.d.S., Mariani, V.C.: Use of chaotic sequences in a biologically inspired algorithm for engineering design optimization. Expert Syst. Appl. 34(3), 1905–1913 (2008). https://doi.org/10.1016/j.eswa.2007.02.002

Das, S., Mullick, S.S., Suganthan, P.N.: Recent advances in differential evolution—an updated survey. Swarm Evol. Comput. 27, 1–30 (2016). https://doi.org/10.1016/j.swevo.2016.01.004

Mirjalili, S.: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl. Based Syst. 89, 228–249 (2015). https://doi.org/10.1016/j.knosys.2015.07.006

Karaboga, D.: An Idea Based on Honey Bee Swarm for Numerical Optimization, Technical Report - TR06. (2005).

Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Global Optim. 39(3), 459–471 (2007). https://doi.org/10.1007/s10898-007-9149-x

Garg, H.: Solving structural engineering design optimization problems using an artificial bee colony algorithm. J. Ind. Manage. Optim. 10(3), 777–794 (2014). https://doi.org/10.3934/jimo.2014.10.777

Shah, H., Tairan, N., Garg, H., Ghazali, R.: Global Gbest guided-artificial bee colony algorithm for numerical function optimization. Computers 7(4), 69 (2018). https://doi.org/10.3390/computers7040069

Xiang, T., Liao, X., Wong, K.-w.: An improved particle swarm optimization algorithm combined with piecewise linear chaotic map. Applied Mathematics and Computation 190(2), 1637–1645 (2007). https://doi.org/10.1016/j.amc.2007.02.103

Liu, B., Wang, L., Jin, Y.-H., Tang, F., Huang, D.-X.: Improved particle swarm optimization combined with chaos. Chaos, Solitons Fractals 25(5), 1261–1271 (2005). https://doi.org/10.1016/j.chaos.2004.11.095

Talatahari, S., Azar, B.F., Sheikholeslami, R., Gandomi, A.: Imperialist competitive algorithm combined with chaos for global optimization. Commun. Nonlinear Sci. Numer. Simul. 17(3), 1312–1319 (2012)

Abdel-Basset, M., El-Shahat, D., Sangaiah, A.K.: A modified nature inspired meta-heuristic whale optimization algorithm for solving 0–1 knapsack problem. International Journal of Machine Learning and Cybernetics, 1–20 (2017). https://doi.org/10.1007/s13042-017-0731-3

He, D., He, C., Jiang, L.-G., Zhu, H.-w., Hu, G.-r.: Chaotic characteristics of a one-dimensional iterative map with infinite collapses. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 48(7), 900–906 (2001). https://doi.org/10.1109/81.933333

Tavazoei, M.S., Haeri, M.: Comparison of different one-dimensional maps as chaotic search pattern in chaos optimization algorithms. Appl. Math. Comput. 187(2), 1076–1085 (2007). https://doi.org/10.1016/j.amc.2006.09.087

Hilborn, R.C.: Chaos and nonlinear dynamics: an introduction for scientists and engineers. Oxford University Press on Demand, (2000)

May, R.M.: Simple mathematical models with very complicated dynamics. In: The Theory of Chaotic Attractors. pp. 85–93. Springer, (2004)

Takens, F.: An introduction to chaotic dynamical systems. In. Springer, (1988)

Peitgen, H.-O., Jürgens, H., Saupe, D.: Chaos and fractals: new frontiers of science. Springer Science & Business Media, (2006)

Li, Y., Deng, S., Xiao, D.: A novel Hash algorithm construction based on chaotic neural network. Neural Comput. Appl. 20(1), 133–141 (2011). https://doi.org/10.1007/s00521-010-0432-2

Ott, E.: Chaos in dynamical systems. Cambridge university press, (2002)

Wolf, A.: Quantifying chaos with Lyapunov exponents. Chaos 16, 285–317 (1986)

Coello, C.A.C., Lechuga, M.S.: MOPSO: a proposal for multiple objective particle swarm optimization. In: Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600), 12–17 May 2002, pp. 1051–1056 vol.1052

Coello, C.A.C., Pulido, G.T., Lechuga, M.S.: Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 256–279 (2004). https://doi.org/10.1109/TEVC.2004.826067

Alamiedy, T.A., Anbar, M., Alqattan, Z.N.M., Alzubi, Q.M.: Anomaly-based intrusion detection system using multi-objective grey wolf optimisation algorithm. J. Ambient. Intell. Humaniz. Comput. 11(9), 3735–3756 (2020). https://doi.org/10.1007/s12652-019-01569-8

Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Trans. Evol. Comput. 3(2), 82–102 (1999). https://doi.org/10.1109/4235.771163

Digalakis, J.G., Margaritis, K.G.: On benchmarking functions for genetic algorithms. Int. J. Comput. Math. 77(4), 481–506 (2001). https://doi.org/10.1080/00207160108805080

Molga, M., Smutnicki, C.: Test functions for optimization needs. (2005)

Yang, X.-S.: Test Problems in Optimization. (2010). arXiv preprint arXiv:1008.0549

Yang, X.-S.: Firefly algorithm. Stochastic Test Funct. Des. Optim 2 (2010). https://doi.org/10.1504/IJBIC.2010.032124

Jamil, M., Yang, X.-S.: A literature survey of benchmark functions for global optimisation problems. Int. J. Math. Modell. Numer. Optim. 4(2), 150–194 (2013). https://doi.org/10.1504/IJMMNO.2013.055204

Zhu, G.-Y., Zhang, W.-B.: Optimal foraging algorithm for global optimization. Appl. Soft Comput. 51, 294–313 (2017). https://doi.org/10.1016/j.asoc.2016.11.047

Liang, J., Suganthan, P., Deb, K.: Novel composition test functions for numerical global optimization. 2005, 68–75 (2005). https://doi.org/10.1109/SIS.2005.1501604

Suganthan, P., Hansen, N., Liang, J., Deb, K., Chen, Y.-p., Auger, A., Tiwari, S.: Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization. 341–357 (2005).

Dhiman, G., Kumar, V.: Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications. Adv. Eng. Softw. 114, 48–70 (2017). https://doi.org/10.1016/j.advengsoft.2017.05.014

Shi, Y., Eberhart, R.C.: Empirical study of particle swarm optimization. In: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, 6–9 July 1999, pp. 1945–1950 Vol. 1943

Eberhart, R.C., Shi, Y.: Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512), 16–19 July 2000 pp. 84–88 vol.81

Shi, Y., Eberhart, R.C.: Parameter selection in particle swarm optimization. In, Berlin, Heidelberg 1998. Evolutionary Programming VII, pp. 591–600. Springer Berlin Heidelberg

Depren, O., Topallar, M., Anarim, E., Ciliz, M.K.: An intelligent intrusion detection system (IDS) for anomaly and misuse detection in computer networks. Expert Syst. Appl. 29(4), 713–722 (2005). https://doi.org/10.1016/j.eswa.2005.05.002

Koc, L., Mazzuchi, T.A., Sarkani, S.J.E.S.w.A.: A network intrusion detection system based on a Hidden Naïve Bayes multiclass classifier. 39(18), 13492–13500 (2012). https://doi.org/10.1016/j.eswa.2012.07.009

UNB ISCX, NSL-KDD. In. Information security Centre of Excellence (ISCX), Univ. New Brunswick, (2015)

Chen, R., Cheng, K., Chen, Y., Hsieh, C.: Using Rough Set and Support Vector Machine for Network Intrusion Detection System. In: 2009 First Asian Conference on Intelligent Information and Database Systems, 1–3 April 2009, pp. 465–470