A cavitation and dynamic void growth model for a general class of strain-softening amorphous materials

Journal of the Mechanics and Physics of Solids - Tập 141 - Trang 104023 - 2020
X.C. Tang1,2, Thao Nguyen3, X.H. Yao2, Justin W. Wilkerson3
1J. Mike Walker ’66 Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, United States
2Department of Engineering Mechanics, South China University of Technology, Guangzhou, Guangdong 510640, China
3J. Mike Walker ‘66 Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, United States

Tài liệu tham khảo

Adibi, 2020, Evolving structure-property relationships in metals with nonequilibrium concentration of vacancies, J. Appl. Phys., 127, 10.1063/5.0004014 Al Abduljabbar, 1998, Effects of pressure sensitivity and notch geometry on notch-tip fields, Polym. Eng. Sci., 38, 1031, 10.1002/pen.10271 Antoun, 2003 Arman, 2010, Dynamic response of Cu46Zr54 metallic glass to high-strain-rate shock loading: plasticity, spall, and atomic-level structures, Phys. Rev. B, 81, 144201, 10.1103/PhysRevB.81.144201 Austin, 2011, A dislocation-based constitutive model for viscoplastic deformation of fcc metals at very high strain rates, Int. J. Plast., 27, 1, 10.1016/j.ijplas.2010.03.002 Brown, 2015, Microstructural effects on damage nucleation in shock-loaded polycrystalline copper, Metall. Mater. Trans. A, 46, 4539, 10.1007/s11661-014-2482-z Cao, 2009, Structural processes that initiate shear localization in metallic glass, Acta Mater., 57, 5146, 10.1016/j.actamat.2009.07.016 Cohen, 1959, Molecular transport in liquids and glasses, J. Chem. Phys., 31, 1164, 10.1063/1.1730566 Curran, 1987, Dynamic failure of solids, Phys. Rep., 147, 253, 10.1016/0370-1573(87)90049-4 Czarnota, 2008, Modelling of dynamic ductile fracture and application to the simulation of plate impact tests on tantalum, J. Mech. Phys. Solids, 56, 1624, 10.1016/j.jmps.2007.07.017 Czarnota, 2006, Modelling of nucleation and void growth in dynamic pressure loading, application to spall test on tantalum, Int. J. Fract., 141, 177, 10.1007/s10704-006-0070-y Dunne, 2005 Escobedo, 2010, Dynamic tensile response of Zr-based bulk amorphous alloys: fracture morphologies and mechanisms, J. Appl. Phys., 107, 123502, 10.1063/1.3447751 Flores, 2007, Characterization of plasticity-induced structural changes in a Zr-based bulk metallic glass using positron annihilation spectroscopy, J. Non-Cryst. Solids, 353, 1201, 10.1016/j.jnoncrysol.2006.11.017 Gao, 1999, Mechanism-based strain gradient plasticity—I. Theory, J. Mech. Phys. Solids, 47, 1239, 10.1016/S0022-5096(98)00103-3 Gao, 2006, An implicit finite element method for simulating inhomogeneous deformation and shear bands of amorphous alloys based on the free-volume model, Model. Simul. Mater. Sci. Eng., 14, 1329, 10.1088/0965-0393/14/8/004 Herring, 1950, Diffusional viscosity of a polycrystalline solid, Phys. Soc., 21, 437 Hill, 1950 Horgan, 1995, Cavitation in nonlinearly elastic solids: areview, Appl. Mech. Rev., 48, 471, 10.1115/1.3005108 Huang, 2002, Inhomogeneous deformation in metallic glasses, J. Mech. Phys. Solids, 50, 1011, 10.1016/S0022-5096(01)00115-6 Huang, 2013, Cavitation instabilities in bulk metallic glasses, Int. J. Solids Struct., 50, 1364, 10.1016/j.ijsolstr.2013.01.011 Huang, 2014, Ductile-to-brittle transition in spallation of metallic glasses, J. Appl. Phys., 116, 445, 10.1063/1.4897552 Huang, 2019, Influence of surface energy and thermal effects on cavitation instabilities in metallic glasses, Mech. Mater., 13, 113, 10.1016/j.mechmat.2019.01.019 Huang, 1991, Cavitation instabilities in elastic-plastic solids, J. Mech. Phys. Solids, 39, 223, 10.1016/0022-5096(91)90004-8 Jeong, 1994, Slip lines in front of a round notch tip in a pressure-sensitive material, Mech. Mater., 19, 29, 10.1016/0167-6636(94)90035-3 Jian, 2015, Short-and medium-range orders in Cu46Zr54 metallic glasses under shock compression, J. Appl. Phys., 118, 015901, 10.1063/1.4923408 Jodar, 2018, Localized atomic segregation in the spalled area of a Zr50Cu40Al10 bulk metallic glasses induced by laser-shock experiment, J. Phys. D, 51, 065304, 10.1088/1361-6463/aaa322 Johnson, 1981, Dynamic fracture and spallation in ductile solids, J. Appl. Phys., 52, 2812, 10.1063/1.329011 Kawamura, 1997, Superplastic deformation of Zr65Al10Ni10Cu15 metallic glass, Scr. Mater., 37, 431, 10.1016/S1359-6462(97)00105-X Knowles, 1965, Finite dynamic deformations of an incompressible elastic medium containing a spherical cavity, Arch. Ration. Mech. Anal., 18, 367, 10.1007/BF00281326 Li, 2016, Spall damage of a mild carbon steel: effects of peak stress, strain rate and pulse duration, Mater. Sci. Eng., 660, 139, 10.1016/j.msea.2016.02.080 Li, 2019, Spall strength of a mild carbon steel: effects of tensile stress history and shock-induced microstructure, Mater. Sci. Eng., 754, 461, 10.1016/j.msea.2019.03.019 Li, 2003, Negative strain rate sensitivity and compositional dependence of fracture strength in Zr/Hf based bulk metallic glasses, Scr. Mater., 49, 1087, 10.1016/j.scriptamat.2003.08.012 Li, 2005, Mechanical behavior of tungsten preform reinforced bulk metallic glass composites, Mater. Sci. Eng., 403, 134, 10.1016/j.msea.2005.04.053 Li, 2015, Inhomogeneous deformation in bulk metallic glasses: FEM analysis, Mater. Sci. Eng., 620, 333, 10.1016/j.msea.2014.10.013 Li, 2017, Effect of strain rate on yielding strength of a Zr-based bulk metallic glass, Mater. Sci. Eng., 680, 21, 10.1016/j.msea.2016.10.081 Lieberman, 2016, Microstructural effects on damage evolution in shocked copper polycrystals, Acta Mater., 116, 270, 10.1016/j.actamat.2016.06.054 Liu, 2005, Strain rate-dependent compressive deformation behavior of Nd-based bulk metallic glass, Intermetallics, 13, 827, 10.1016/j.intermet.2005.01.012 Lu, 2002 Lu, 2016, Ductile fracture of bulk metallic glass Zr50Cu40Al10 under high strain-rate loading, Mater. Sci. Eng., 651, 848, 10.1016/j.msea.2015.11.040 Lubarda, 2004, Void growth by dislocation emission, Acta Mater., 52, 1397, 10.1016/j.actamat.2003.11.022 Lubarda, 2003, On plastic void growth in strong ductile materials, Crnog. Akad. Nauka Umjetnosti, 15, 1 Luo, 2015, Tensile fracture of metallic glasses via shear band cavitation, Acta Mater., 82, 483, 10.1016/j.actamat.2014.09.008 Maaß, 2015, Long range stress fields and cavitation along a shear band in a metallic glass: the local origin of fracture, Acta Mater., 98, 94, 10.1016/j.actamat.2015.06.062 Maaß, 2015, Shear-band dynamics in metallic glasses, Adv. Funct. Mater., 25, 2353, 10.1002/adfm.201404223 Mallick, 2020, A brief review of spall failure in pure and alloyed magnesium, J. Dyn. Behav. Mater., 1 McClintock, 1968, A criterion for ductile fracture by the growth of holes, J. Appl. Mech., 35, 363, 10.1115/1.3601204 McMeeking, 1977, Finite deformation analysis of crack-tip opening in elastic-plastic materials and implications for fracture, J. Mech. Phys. Solids, 25, 357, 10.1016/0022-5096(77)90003-5 Moshe, 2000, Experimental measurements of the strength of metals approaching the theoretical limit predicted by the equation of state, Appl. Phys. Lett., 76, 1555, 10.1063/1.126094 Murali, 2013, Shear bands mediate cavitation in brittle metallic glasses, Scr. Mater., 68, 567, 10.1016/j.scriptamat.2012.11.038 Nabarro, 1948, Report of a conference on the strength of solids, Phys. Soc., 75, 75 Nguyen, 2020, A physics-based model and simple scaling law to predict the pressure dependence of single crystal spall strength, J. Mech. Phys. Solids, 103875, 10.1016/j.jmps.2020.103875 Nguyen, 2019, The role of elastic and plastic anisotropy in intergranular spall failure, Acta Mater., 168, 1, 10.1016/j.actamat.2019.01.033 Ortiz, 1992, Effect of strain hardening and rate sensitivity on the dynamic growth of a void in a plastic material, J. Appl. Mech., 59, 48, 10.1115/1.2899463 Pan, 2020, Strain-hardening and suppression of shear-banding in rejuvenated bulk metallic glass, Nature, 578, 559, 10.1038/s41586-020-2016-3 Pan, 2015, Origin of anomalous inverse notch effect in bulk metallic glasses, J. Mech. Phys. Solids, 84, 85, 10.1016/j.jmps.2015.07.006 Popović, 2018, Elastoplastic description of sudden failure in athermal amorphous materials during quasistatic loading, Phys. Rev. E, 98, 040901, 10.1103/PhysRevE.98.040901 Qu, 2017, Revealing the shear band cracking mechanism in metallic glass by X-ray tomography, Scr. Mater., 133, 24, 10.1016/j.scriptamat.2017.02.018 Seaman, 2002, Inertia and temperature effects in void growth, Shock Compression Condens. Matter, 620, 607, 10.1063/1.1483612 Shao, 2014, Direct experimental evidence of nano-voids formation and coalescence within shear bands, Appl. Phys. Lett., 105, 181909, 10.1063/1.4901281 Shao, 2013, Two-zone heterogeneous structure within shear bands of a bulk metallic glass, Appl. Phys. Lett., 103, 171901, 10.1063/1.4826117 Singh, 2013, Cavitation in materials with distributed weak zones: implications on the origin of brittle fracture in metallic glasses, J. Mech. Phys. Solids, 61, 1047, 10.1016/j.jmps.2012.12.001 Singh, 2014, Cavitation in brittle metallic glasses–effects of stress state and distributed weak zones, Int. J. Solids Struct., 51, 4373, 10.1016/j.ijsolstr.2014.09.005 Spaepen, 1977, A microscopic mechanism for steady state inhomogeneous flow in metallic glasses, Acta Metall., 25, 407, 10.1016/0001-6160(77)90232-2 Steenbrink, 1997, Void growth in glassy polymers, J. Mech. Phys. Solids, 45, 405, 10.1016/S0022-5096(96)00093-2 Steif, 1982, Strain localization in amorphous metals, Acta Metall., 30, 447, 10.1016/0001-6160(82)90225-5 Tang, 2018, Spall damage of a Ta particle-reinforced metallic glass matrix composite under high strain rate loading, Mater. Sci. Eng., 711, 284, 10.1016/j.msea.2017.11.032 Tang, 2019, Cup-cone structure in spallation of bulk metallic glasses, Acta Mater., 178, 219, 10.1016/j.actamat.2019.08.006 Tvergaard, 1992, Cavitation instabilities in a power hardening elastic-plastic solid, Eur. J. Mech. A/Solids, 11, 215 Wang, 2015, Mechanical response of Ti-based bulk metallic glass under plate-impact compression, Intermetallics, 63, 12, 10.1016/j.intermet.2015.03.016 Wang, 1994, Growth of voids in porous ductile materials at high strain rate, J. Appl. Phys., 76, 1535, 10.1063/1.357730 Wang, 2013, Densification and strain hardening of a metallic glass under tension at room temperature, Phys. Rev. Lett., 111, 135504, 10.1103/PhysRevLett.111.135504 Wilkerson, 2016, A closed-form criterion for dislocation emission in nano-porous materials under arbitrary thermomechanical loading, J. Mech. Phys. Solids, 86, 94, 10.1016/j.jmps.2015.10.005 Wilkerson, 2016, Unraveling the anomalous grain size dependence of cavitation, Phys. Rev. Lett., 117, 215503, 10.1103/PhysRevLett.117.215503 Wilkerson, 2017, On the micromechanics of void dynamics at extreme rates, Int. J. Plast., 95, 21, 10.1016/j.ijplas.2017.03.008 Wilkerson, 2014, A dynamic void growth model governed by dislocation kinetics, J. Mech. Phys. Solids, 70, 262, 10.1016/j.jmps.2014.05.018 Wright, 2008, Dynamic void nucleation and growth in solids: a self-consistent statistical theory, J. Mech. Phys. Solids, 56, 336, 10.1016/j.jmps.2007.05.012 Wright, 2003, Free volume coalescence and void formation in shear bands in metallic glass, J. Appl. Phys., 93, 1432, 10.1063/1.1531212 Wu, 2003, The coupled effects of plastic strain gradient and thermal softening on the dynamic growth of voids, Int. J. Solids Struct., 40, 6633, 10.1016/S0020-7683(03)00439-6 Wu, 2003, The dynamic growth of a single void in a viscoplastic material under transient hydrostatic loading, J. Mech. Phys. Solids, 51, 1, 10.1016/S0022-5096(02)00079-0 Yang, 2008, Fracture behavior of Zr55Cu30Al10Ni5 bulk metallic glass under quasi-static and dynamic compression, J. Mater. Res., 23, 1744, 10.1557/JMR.2008.0217 Yuan, 2007, Spall strength and hugoniot elastic limit of a zirconium-based bulk metallic glass under planar shock compression, J. Mater. Res., 22, 402, 10.1557/jmr.2007.0053 Zheng, 1994, Influence of inertial and thermal effects on the dynamic growth of voids in porous ductile materials, J. Phys. IV, 4, C8 Zheng, 2011, Influence of strain-rate on compressive-deformation behavior of a Zr–Cu–Ni–Al bulk metallic glass at cryogenic temperature, Mater. Sci. Eng., 528, 6855, 10.1016/j.msea.2011.05.067