A categorical setting for the 4-Colour Theorem
Tài liệu tham khảo
Aigner, 1984, Graphentheorie. Eine Entwicklung aus dem 4-Farben Problem
Appel, 1977, Every planar map is four colorable. Part I: Discharging, Illinois J. Math., 21, 429, 10.1215/ijm/1256049011
Appel, 1977, Every planar map is four colorable. Part II: Reducibility, Illinois J. Math., 21, 491, 10.1215/ijm/1256049012
Appel, 1986, The four color proof suffices, Math. Intelligencer, 8/1, 20
Appel, 1989, Every Planar Map is Four Colorable, Vol. 98
Artin, 1972, Théorie des Topos et Cohomologie Etale des Schemas (SGA4), Vol. 269
Barr, 1980, Atomic toposes, J. Pure Appl. Algebra, 17, 1, 10.1016/0022-4049(80)90020-1
Barr, 1985, Toposes, Triples and Teories, 278
Bénabou, 1983
Fawcett, 1986, A categorical characterisation of the Four Colour Theorem, Canad. Math. Bull., 29, 426, 10.4153/CMB-1986-067-8
Freyd, 1990, Categories, Allegories, 39
Johnstone, 1977, Topos Theory, Vol. 10
Joyal, 1981, Une théorie combinatoire des séries formelles, Adv. Math., 42, 1, 10.1016/0001-8708(81)90052-9
König, 1936
D. Pavlović, A survey of recoloring, in preparation.
Saaty, 1977
Tutte, 1984, Graph Theory, 21
Whitney, 1972, Kempe chains and the four color problem, Utilitas Math., 2, 241