A categorical setting for the 4-Colour Theorem

Journal of Pure and Applied Algebra - Tập 102 - Trang 75-88 - 1995
Duško Pavlović1
1Department of Mathematics and Statistics, McGill University, Montreal, Quebec, Canada

Tài liệu tham khảo

Aigner, 1984, Graphentheorie. Eine Entwicklung aus dem 4-Farben Problem Appel, 1977, Every planar map is four colorable. Part I: Discharging, Illinois J. Math., 21, 429, 10.1215/ijm/1256049011 Appel, 1977, Every planar map is four colorable. Part II: Reducibility, Illinois J. Math., 21, 491, 10.1215/ijm/1256049012 Appel, 1986, The four color proof suffices, Math. Intelligencer, 8/1, 20 Appel, 1989, Every Planar Map is Four Colorable, Vol. 98 Artin, 1972, Théorie des Topos et Cohomologie Etale des Schemas (SGA4), Vol. 269 Barr, 1980, Atomic toposes, J. Pure Appl. Algebra, 17, 1, 10.1016/0022-4049(80)90020-1 Barr, 1985, Toposes, Triples and Teories, 278 Bénabou, 1983 Fawcett, 1986, A categorical characterisation of the Four Colour Theorem, Canad. Math. Bull., 29, 426, 10.4153/CMB-1986-067-8 Freyd, 1990, Categories, Allegories, 39 Johnstone, 1977, Topos Theory, Vol. 10 Joyal, 1981, Une théorie combinatoire des séries formelles, Adv. Math., 42, 1, 10.1016/0001-8708(81)90052-9 König, 1936 D. Pavlović, A survey of recoloring, in preparation. Saaty, 1977 Tutte, 1984, Graph Theory, 21 Whitney, 1972, Kempe chains and the four color problem, Utilitas Math., 2, 241