A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD
Tóm tắt
Từ khóa
Tài liệu tham khảo
Jacobson, M. D., Weil, M. & Raff, M. C. Programmed cell death in animal development. Cell 88, 347–354 ( 1997).
Wyllie, A. H., Kerr, J. F. R. & Currie, A. R. Cell death: the significance of apoptosis. Int. Rev. Cytol. 68, 251–306 (1980).
Compton, M. M. Abiochemical hallmark of apoptosis: internucleosomal degradation of the genome. Cancer Metast. Rev. 11, 105– 119 (1992).
Wyllie, A. H., Morris, R. G., Smith, A. L. & Dunlop, D. Chromatin cleavage in apoptosis: association with condensed chromatin morphology and dependence on macromolecular synthesis. J. Pathol. 142, 66–77 (1984).
Wyllie, A. H. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284, 555– 556 (1980).
Peitsch, M. C. et al. Characterization of the endogenous deoxyribonuclease involved in nuclear DNA degradation during apoptosis (programmed cell death). EMBO J. 12, 371–377 ( 1993).
Montague, J. W., Hughes, F. J. & Cidlowski, J. A. Native recombinant cyclophilins A, B, and C degrade DNA independently of peptidylpropyl cis-trans-isomerase activity. Potential roles of cyclophilins in apoptosis. J. Biol. Chem. 272, 6677–66784 ( 1997).
Barry, M. & Eastman, A. Identification of deoxyribonuclease II as an endonuclease involved in apoptosis. Arch. Biochem. Biophys. 300, 440–450 ( 1993).
Itoh, N. et al. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 66, 233– 243 (1991).
Schulze-Osthoff, K., Walczak, H., Dröge, W. & Krammer, P. H. Cell nucleus and DNA fragmentation are not required for apoptosis. J. Cell. Biol. 127, 15– 20 (1994).
Enari, M., Hug, H. & Nagata, S. Involvement of an ICE-like protease in Fas-mediated apoptosis. Nature 375, 78–81 ( 1995).
Enari, M., Talanian, R. V., Wong, W. W. & Nagata, S. Sequential activation of ICE-like and CPP32-like proteases during Fas-mediated apoptosis. Nature 380, 723– 726 (1996).
Longthorne, V. & Williams, G. Caspase activity is required for commitment to Fas-mediated apoptosis. EMBO J. 16, 3805–3812 (1997).
Armstrong, R. C. et al. Fas-induced activation of the cell death-related protease CPP32 is inhibited by Bcl-2 and by ICE family protease inhibitors. J. Biol. Chem. 271, 16850–16855 (1996).
Muzio, M. et al. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 85, 817–827 ( 1996).
Boldin, M. P., Goncharov, T. M., Goltsev, Y. V. & Wallach, D. Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell 85, 803–815 (1996).
Henkart, P. A. ICE family protease: mediators of all apoptotic cell death? Immunity 4, 195–201 ( 1996).
Martin, S. & Green, D. Protease activation during apoptosis: death by a thousand cuts. Cell 82, 349– 352 (1995).
Enari, M., Hase, A. & Nagata, S. Apoptosis by a cytosolic extract from Fas-activated cells. EMBO J. 14, 5201–5208 (1995).
Martin, S. J. et al. Cell-free reconstitution of Fas-, UV radiation- and ceramide-induced apoptosis. EMBO J. 14, 5191– 5200 (1995).
Liu, X., Zou, H., Slaughter, C. & Wang, X. DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89, 175– 184 (1997).
Sakahira, H., Enari, M. & Nagata, S. Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391, 96– 99 (1998).
Blanar, M. A. & Rutter, W. J. Interaction cloning: identification of a helix-loop-helix zipper protein that interacts with c-Fos. Science 256, 1014–1018 ( 1992).
Zakut, R. et al. Nucleotide sequence of the rat skeletal muscle actin gene. Nature 298, 857–859 ( 1982).
Dingwall, C. & Laskey, R. Nuclear targeting sequences—a consensus? Trends Biol. Sci. 16, 478– 481 (1991).
Cohen, J. J., Duke, R. C., Fadok, V. A. & Sellins, K. S. Apoptosis and programmed cell death in immunity. Annu. Rev. Immunol. 10, 267–293 ( 1992).
Shiokawa, D., Iwamatsu, A. & Tamura, S. Purification, characterization, and amino acid sequencing of DNase γ from rat spleen. Arch. Biochem. Biophys. 346, 15–20 (1997).
Batistatou, A. & Green, L. Internucleosomal DNA cleavage and neuronal cell survival/death. J. Cell Biol. 122, 523–532 (1993).
Mogil, R. et al. Role of DNA fragmentation in T cell activation-induced apoptosis in vitro and in vivo. J. Immunol. 152, 1674–1683 (1994).
Verma, I., Stevenson, J., Schwarz, E., Van Antwerp, D. & Miyamoto, S. ReI/NF-κB/IκB family: intimate tales of association and dissociation. Genes Dev. 9, 2723–2735 (1995).
Baldwin, A. The NF-κB and IκB proteins: new discoveries and insights. Annu. Rev. Immunol. 14, 649–681 (1996).
Beg, A. et al. IκB interacts with the nuclear localization sequences of the subunits of NF-κB: a mechanism for cytoplasmic retention. Genes Dev. 6, 1899–1913 (1992).
Wallis, R. et al. In vivo and in vitro characterization of overproduced colicin E9 immunity protein. Eur. J. Biochem. 207, 687–695 (1992).
Hartl, F.-U., Hlodan, R. & Langer, T. Molecular chaperones in protein folding: the art of avoiding sticky situations. Trends Biol. Sci. 19, 20–25 (1994).
Shi, G. et al. β-Subunits promote K+ channel surface expression through effects early in biosynthesis. Neuron 16, 843– 852 (1996).
Chen, P. & Hochstrasserr, M. Autocatalytic subunit processing couples active site formation in the 20S proteasome to completion of assembly. Cell 86, 961–972 (1996).
Iwamatsu, A. S-carboxymethylation of proteins transferred onto polyvinylidine difluoride membranes followed by in situ protease digestion and amino acid microsequencing. Electrophoresis 13, 142– 147 (1992).
Iwamatsu, A. & Yoshida-Kuboomura, N. Systematic peptide fragmentation of polyvinylidine difluoride (PVDF)-immobilized proteins prior to microsequencing. J. Biochem. (Tokyo) 120, 29– 34 (1996).
Suda, T., Takahashi, T., Golstein, P. & Nagata, S. Molecular cloning and expression of the Fas ligand: a novel member of the tumor necrosis factor family. Cell 75, 1169 –1178 (1993).
Hager, D. A. & Burgess, R. R. Elution of proteins from sodium dodecyl sulfate-polyacrylamide gels, removal of sodium dodecyl sulfate, and renaturation of enzymatic activity: results with sigma subunit of Escherichai coli RNA polymerase, wheat germ DNA topoisomerase, and other enzymes. Analyt. Biochem. 109, 76– 86 (1980).