A cascaded graph convolutional network for point cloud completion

L. Wang1, Jun Li1, Shangwei Guo1, Shuo Han1
1Beijing Key Lab for Precision Optoelectronic Measurement Instrument and Technology, Beijing 100081, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Li, R., et al.: PU-GAN: a point cloud upsampling adversarial network. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Oct 2019.

Engel, J., Schops, T., Cremers, D.: LSD-SLAM: large-scale direct monocular SLAM. In: Fleet, D., et al. (eds.) Computer Vision-ECCV 2014, pp. 834–849. Springer, Cham (2014)

Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans. Robot. 31(5), 1147–1163 (2015). https://doi.org/10.1109/TRO.2015.2463671

Wu, Z., et al.: 3D ShapeNets: a deep representation for volumetric shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 2015.

Varley, J., et al.: Shape completion enabled robotic grasping. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2442–2447 (2017). https://doi.org/10.1109/IROS.2017.8206060.

Pan, L.: ECG: edge-aware point cloud completion with graph convolution. IEEE Robot. Autom. Lett. 5(3), 4392–4398 (2020). https://doi.org/10.1109/LRA.2020.2994483

Sarmad, M., Lee, H.J., Kim, Y.M.: RL-GAN-Net: a reinforcement learning agent controlled GAN network for real-time point cloud shape completion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 2019.

Wang, Y., et al.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graph 38, 5 (2019). https://doi.org/10.1145/3326362

Yuan, W., et al.: PCN: point completion network. In: 2018 International Conference on 3D Vision (3DV), pp. 728–737 (2018). https://doi.org/10.1109/3DV.2018.00088.

Guo, S., et al.: CT-block: a novel local and global features extractor for point cloud. In: CoRR abs/2111.15400 (2021). arXiv: 2111.15400. https://arxiv.org/abs/2111.15400.

Dai, A., Qi, C.R., Niessner, M.: Shape completion using 3D-encoder-predictor CNNs and shape synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 2017.

Han, X., et al.: High-resolution shape completion using deep neural networks for global structure and local geometry inference. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV). Oct 2017.

Xie, H., et al.: GRNet: gridding residual network for dense point cloud completion. In: Vedaldi, A., et al. (eds.) Computer Vision—ECCV 2020, pp. 365–381. Springer, Cham (2020)

Shen, Y., et al.: Mining point cloud local structures by kernel correlation and graph pooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 2018.

Su, H., et al.: Multi-view convolutional neural networks for 3D shape recognition. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV). Dec 2015.

Soltani, A.A., et al.: Synthesizing 3D shapes via modeling multi-view depth maps and silhouettes with deep generative networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 2017.

He, X., et al.: Triplet-center loss for multi-view 3D object retrieval. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 2018.

Feng, Y., et al.: GVCNN: group-view convolutional neural networks for 3D shape recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 2018.

Zhang, K., et al.: Linked dynamic graph CNN: LEARNING ON POINT CLOUD VIA LINKING HIERARCHICAL Features. 2019. arXiv:1904.10014 [cs.CV].

Liu, J., et al.: Dynamic points agglomeration for hierarchical point sets learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Oct 2019.

Qi, C.R., et al.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 2017.

Qi, C.R., et al.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates Inc, Red Hook (2017)

Achlioptas, P., et al.: Learning representations and generative models for 3D point clouds. In: J. Dy, A. Krause (eds) Proceedings of the 35th International Conference on Machine Learning, vol. 80. Proceedings of Machine Learning Research. PMLR, Oct 2018, pp. 40–49. https://proceedings.mlr.press/v80/achlioptas18a.html.

Yang, Y., et al.: FoldingNet: point cloud auto-encoder via deep grid deformation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 2018.

Li, J., et al.: DPG-Net: Densely progressive-growing network for point cloud completion. Neurocomputing 491, 1–13 (2022). https://doi.org/10.1016/j.neucom.2022.03.060

Chang, Y., Jung, C., Xu, Y.: FinerPCN: high fidelity point cloud completion network using pointwise convolution. Neurocomputing 460, 266–276 (2021). https://doi.org/10.1016/j.neucom.2021.06.080

Nie, Y., et al.: Skeleton-bridged point completion: from global inference to local adjustment. In: Larochelle, H., et al. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 16119–16130. Curran Associates Inc (2020)

Mendoza, A., et al.: Refinement of predicted missing parts enhance point cloud completion. In: CoRRabs/2010.04278 (2020). arXiv:2010.04278. https://arxiv.org/abs/2010.04278.

Huang, Z., et al.: PF-Net: point fractal network for 3D point cloud completion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 2020.

Guo, Y., et al.: Deep learning for 3D point clouds: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 43(12), 4338–4364 (2021). https://doi.org/10.1109/TPAMI.2020.3005434

Tchapmi, L.P., et al.: TopNet: structural point cloud decoder. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 2019.

Shi, J., et al.: Graph-guided deformation for point cloud completion. IEEE Robot. Autom. Lett. 6(4), 7081–7088 (2021). https://doi.org/10.1109/LRA.2021.3097081

Chang, A.X., et al.: ShapeNet: an information-rich 3D model repository. In: CoRRabs/1512.03012 (2015). arXiv:1512.03012. http//arxiv.org/abs/1512.03012.

Maturana, D., Scherer, S.: VoxNet: a 3D convolutional neural network for real-time object recognition. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 922–928 (2015). https://doi.org/10.1109/IROS.2015.7353481.

Graham, B., Engelcke, M., van der Maaten, L.: 3D semantic segmentation with submanifold sparse convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 2018.

Yu, T., Meng, J., Yuan, J.: Multi-view harmonized bilinear network for 3D object recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 2018.

Wei, X., Yu, R., Sun, J.: View-GCN: view-based graph convolutional network for 3D shape analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 2020.

Riegler, G., Ulusoy, A.O., Geiger, A. : OctNet: LearningDeep 3D representations at high resolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 2017.

Le, T., Duan, Y. : PointGrid: a deep network for 3D shape understanding. In: Proceedings of the IEEE Conference on Computer Vision and PatternRecognition (CVPR). June 2018.

Yang, Z., Wang, L.: Learning relationships for multi-view 3D object recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Oct. 2019.

Joseph-Rivlin, M., Zvirin, A., Kimmel, R.: Momen(e)t: flavor the moments in learning to classify shapes. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops. Oct 2019.

Yang, J., et al.: Modeling point clouds with self-attention and gumbel subset sampling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 2019.

Zhao, H., et al.: PointWeb: enhancing local neighborhood features for point cloud processing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 2019.

Duan, Y., et al. Structural relational reasoning of point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 2019.

Lin, H., et al.: Justlookup: one millisecond deep feature extraction for point clouds by lookup tables”. In: 2019 IEEE International Conference on Multimedia and Expo (ICME), pp. 326–331 (2019). https://doi.org/10.1109/ICME.2019.00064.

Sun, X., Lian, Z., Xiao, J.: SRINet: learning strictly rotation invariant representations for point cloud classiffcation and segmentation. In: Proceedings of the 27th ACM International Conference on Multimedia. MM’s19. Association for Computing Machinery, Nice, pp. 980–988 (2019). https://doi.org/10.1145/3343031.3351042

Yan, X., et al.: PointASNL: robust point clouds processing using nonlocal neural networks with adaptive sampling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 2020.

Liu, H., Tian, S.: Deep 3D point cloud classiffcation and segmentation network based on GateNet. In: The Visual Computer (2023), pp. 1–11.

Hu, J., et al.: Squeeze-and-excitation networks. IEEE Trans. Pattern Anal. Mach. Intell. 42(8), 2011–2023 (2020)

Lu, D., et al.: Transformers in 3D point clouds: a survey. In: (2022).

Yang, Z., et al.: XLNet: generalized autoregressive pretraining for language understanding. In: CoRR abs/1906.08237 (2019). arXiv: 1906.08237. http://arxiv.org/abs/1906.08237.

Yu, J., et al.: 3D medical point transformer: introducing convolution to attention networks for medical point cloud analysis. In: (2021).

Zhou, C., et al.: PTTR: relational 3D point cloud object tracking with transformer. In: CoRR abs/2112.02857 (2021). arXiv: 2112.02857. https://arxiv.org/abs/2112.02857.

Wei, M., et al.: AGConv: adaptive graph convolution on 3D point clouds”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45.8, pp. 9374–9392 (2023). https://doi.org/10.1109/TPAMI.2023.3238516.

Simonovsky, M., Komodakis, N.: Dynamic edge-conditioned filters in convolutional neural networks on graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 2017.

Xu, Q., et al.: Grid-GCN for fast and scalable point cloud learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 2020.

Rusu, R.B., Cousins, S.: 3D is here: point cloud library (PCL). In: 2011 IEEE International Conference on Robotics and Automation, pp. 1–4 (2011). https://doi.org/10.1109/ICRA.2011.5980567.

Sun, Y., et al.: PGCNet: patch graph convolutional network for point cloud segmentation of indoor scenes. In: The Visual Computer 36.10 (2020).

Chen, L., Zhang, Q.: DDGCN: graph convolution network based on direction and distance for point cloud learning. In: The Visual Computer (2023).

Velikovi, P., et al. Graph attention networks. In: (2017).

Zhai, R., et al.: IAGC: interactive attention graph convolution network for semantic segmentation of point clouds in building indoor environment. ISPRS Int. J. Geo-Inf. 11 (2022).

Qiu, Q.: DGANet: a dilated graph attention-based network for local feature extraction on 3D point clouds. Remote Sens. 13 (2021).

Liu, X., et al.: SPU-net: self-supervised point cloud upsampling by coarseto-fine reconstruction with self-projection optimization (2020)

Song, Y., Shen, W., Peng, K.: A novel partial point cloud registration method based on graph attention network. In: The Visual Computer (2023).

Thrun, S., Wegbreit, B.: Shape from symmetry. In: Tenth IEEE International Conference on Computer Vision (ICCV’05), vol. 1, 2, pp. 1824–1831 (2005). https://doi.org/10.1109/ICCV.2005.221

Kazhdan, M., Hoppe, H.: Screened poisson surface reconstruction. In: ACM Trans. Graph. 32.3 (July 2013). https://doi.org/10.1145/2487228.2487237

Sung, M., et al.: Data-driven structural priors for shape completion. In: ACM Trans. Graph. 34.6 (Nov 2015). https://doi.org/10.1145/2816795.2818094

Stutz, D., Geiger, A.: Learning 3D shape completion from laserscan data with weak supervision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 2018.

Nguyen, D.T., et al.: A field model for repairing 3D shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 2016.

Liu, M., et al.: Morphing and sampling network for dense point cloud completion. In: Proceedings of the AAAI Conference on Artiffcial Intelligence, 34.07 (Apr 2020), pp. 11596–11603. https://doi.org/10.1609/aaai.v34i07.6827. https://ojs.aaai.org/index.php/AAAI/article/view/6827.

Liu, Q., et al.: PointALCR: adversarial latent GAN and contrastive regularization for point cloud completion. In: The Visual Computer (2022).

Yu, X., et al.: PoinTr: diverse point cloud completion with geometry aware transformers. In: (2021).

Xiang, P., et al.: SnowffakeNet: point cloud completion by snowffake point deconvolution with skip-transformer. In: (2021).

Chen, W., et al.: TransSC: transformer-based shape completion for grasp evaluation. In: (2021).

Zhou, H., et al.: SeedFormer: patch seeds based point cloud completion with upsample transformer. In: ArXiv abs/2207.10315 (2022). https://api.semanticscholar.org/CorpusID:250920848.

Zhang, W., et al.: Point cloud completion via skeleton-detail transformer. In: IEEE Trans. Vis. Comput. Graph. (Oct 2023).

Wen, X., et al.: Point cloud completion by skip-attention network with hierarchical folding. In: IEEE (2020).

Gadelha, M., Wang, R., Maji, S.: Multiresolution treenetworks for 3D point cloud processing. In: Proceedings of the European Conference on Computer Vision (ECCV). Sept 2018.

Lin, C.-H., Kong, C., Lucey, S.: Learning efffcient point cloudgeneration for dense 3D object reconstruction. In: Proceedings of the AAAI Conference on Artiffcial Intelligence, vol. 32(1) (2018). https://doi.org/10.1609/aaai.v32i1.12278. https://ojs.aaai.org/index.php/AAAI/article/view/12278.