A cascaded graph convolutional network for point cloud completion
Tóm tắt
Từ khóa
Tài liệu tham khảo
Li, R., et al.: PU-GAN: a point cloud upsampling adversarial network. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Oct 2019.
Engel, J., Schops, T., Cremers, D.: LSD-SLAM: large-scale direct monocular SLAM. In: Fleet, D., et al. (eds.) Computer Vision-ECCV 2014, pp. 834–849. Springer, Cham (2014)
Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans. Robot. 31(5), 1147–1163 (2015). https://doi.org/10.1109/TRO.2015.2463671
Wu, Z., et al.: 3D ShapeNets: a deep representation for volumetric shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 2015.
Varley, J., et al.: Shape completion enabled robotic grasping. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2442–2447 (2017). https://doi.org/10.1109/IROS.2017.8206060.
Pan, L.: ECG: edge-aware point cloud completion with graph convolution. IEEE Robot. Autom. Lett. 5(3), 4392–4398 (2020). https://doi.org/10.1109/LRA.2020.2994483
Sarmad, M., Lee, H.J., Kim, Y.M.: RL-GAN-Net: a reinforcement learning agent controlled GAN network for real-time point cloud shape completion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 2019.
Wang, Y., et al.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graph 38, 5 (2019). https://doi.org/10.1145/3326362
Yuan, W., et al.: PCN: point completion network. In: 2018 International Conference on 3D Vision (3DV), pp. 728–737 (2018). https://doi.org/10.1109/3DV.2018.00088.
Guo, S., et al.: CT-block: a novel local and global features extractor for point cloud. In: CoRR abs/2111.15400 (2021). arXiv: 2111.15400. https://arxiv.org/abs/2111.15400.
Dai, A., Qi, C.R., Niessner, M.: Shape completion using 3D-encoder-predictor CNNs and shape synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 2017.
Han, X., et al.: High-resolution shape completion using deep neural networks for global structure and local geometry inference. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV). Oct 2017.
Xie, H., et al.: GRNet: gridding residual network for dense point cloud completion. In: Vedaldi, A., et al. (eds.) Computer Vision—ECCV 2020, pp. 365–381. Springer, Cham (2020)
Shen, Y., et al.: Mining point cloud local structures by kernel correlation and graph pooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 2018.
Su, H., et al.: Multi-view convolutional neural networks for 3D shape recognition. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV). Dec 2015.
Soltani, A.A., et al.: Synthesizing 3D shapes via modeling multi-view depth maps and silhouettes with deep generative networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 2017.
He, X., et al.: Triplet-center loss for multi-view 3D object retrieval. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 2018.
Feng, Y., et al.: GVCNN: group-view convolutional neural networks for 3D shape recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 2018.
Zhang, K., et al.: Linked dynamic graph CNN: LEARNING ON POINT CLOUD VIA LINKING HIERARCHICAL Features. 2019. arXiv:1904.10014 [cs.CV].
Liu, J., et al.: Dynamic points agglomeration for hierarchical point sets learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Oct 2019.
Qi, C.R., et al.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 2017.
Qi, C.R., et al.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates Inc, Red Hook (2017)
Achlioptas, P., et al.: Learning representations and generative models for 3D point clouds. In: J. Dy, A. Krause (eds) Proceedings of the 35th International Conference on Machine Learning, vol. 80. Proceedings of Machine Learning Research. PMLR, Oct 2018, pp. 40–49. https://proceedings.mlr.press/v80/achlioptas18a.html.
Yang, Y., et al.: FoldingNet: point cloud auto-encoder via deep grid deformation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 2018.
Li, J., et al.: DPG-Net: Densely progressive-growing network for point cloud completion. Neurocomputing 491, 1–13 (2022). https://doi.org/10.1016/j.neucom.2022.03.060
Chang, Y., Jung, C., Xu, Y.: FinerPCN: high fidelity point cloud completion network using pointwise convolution. Neurocomputing 460, 266–276 (2021). https://doi.org/10.1016/j.neucom.2021.06.080
Nie, Y., et al.: Skeleton-bridged point completion: from global inference to local adjustment. In: Larochelle, H., et al. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 16119–16130. Curran Associates Inc (2020)
Mendoza, A., et al.: Refinement of predicted missing parts enhance point cloud completion. In: CoRRabs/2010.04278 (2020). arXiv:2010.04278. https://arxiv.org/abs/2010.04278.
Huang, Z., et al.: PF-Net: point fractal network for 3D point cloud completion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 2020.
Guo, Y., et al.: Deep learning for 3D point clouds: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 43(12), 4338–4364 (2021). https://doi.org/10.1109/TPAMI.2020.3005434
Tchapmi, L.P., et al.: TopNet: structural point cloud decoder. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 2019.
Shi, J., et al.: Graph-guided deformation for point cloud completion. IEEE Robot. Autom. Lett. 6(4), 7081–7088 (2021). https://doi.org/10.1109/LRA.2021.3097081
Chang, A.X., et al.: ShapeNet: an information-rich 3D model repository. In: CoRRabs/1512.03012 (2015). arXiv:1512.03012. http//arxiv.org/abs/1512.03012.
Maturana, D., Scherer, S.: VoxNet: a 3D convolutional neural network for real-time object recognition. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 922–928 (2015). https://doi.org/10.1109/IROS.2015.7353481.
Graham, B., Engelcke, M., van der Maaten, L.: 3D semantic segmentation with submanifold sparse convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 2018.
Yu, T., Meng, J., Yuan, J.: Multi-view harmonized bilinear network for 3D object recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 2018.
Wei, X., Yu, R., Sun, J.: View-GCN: view-based graph convolutional network for 3D shape analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 2020.
Riegler, G., Ulusoy, A.O., Geiger, A. : OctNet: LearningDeep 3D representations at high resolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 2017.
Le, T., Duan, Y. : PointGrid: a deep network for 3D shape understanding. In: Proceedings of the IEEE Conference on Computer Vision and PatternRecognition (CVPR). June 2018.
Yang, Z., Wang, L.: Learning relationships for multi-view 3D object recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Oct. 2019.
Joseph-Rivlin, M., Zvirin, A., Kimmel, R.: Momen(e)t: flavor the moments in learning to classify shapes. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops. Oct 2019.
Yang, J., et al.: Modeling point clouds with self-attention and gumbel subset sampling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 2019.
Zhao, H., et al.: PointWeb: enhancing local neighborhood features for point cloud processing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 2019.
Duan, Y., et al. Structural relational reasoning of point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 2019.
Lin, H., et al.: Justlookup: one millisecond deep feature extraction for point clouds by lookup tables”. In: 2019 IEEE International Conference on Multimedia and Expo (ICME), pp. 326–331 (2019). https://doi.org/10.1109/ICME.2019.00064.
Sun, X., Lian, Z., Xiao, J.: SRINet: learning strictly rotation invariant representations for point cloud classiffcation and segmentation. In: Proceedings of the 27th ACM International Conference on Multimedia. MM’s19. Association for Computing Machinery, Nice, pp. 980–988 (2019). https://doi.org/10.1145/3343031.3351042
Yan, X., et al.: PointASNL: robust point clouds processing using nonlocal neural networks with adaptive sampling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 2020.
Liu, H., Tian, S.: Deep 3D point cloud classiffcation and segmentation network based on GateNet. In: The Visual Computer (2023), pp. 1–11.
Hu, J., et al.: Squeeze-and-excitation networks. IEEE Trans. Pattern Anal. Mach. Intell. 42(8), 2011–2023 (2020)
Lu, D., et al.: Transformers in 3D point clouds: a survey. In: (2022).
Yang, Z., et al.: XLNet: generalized autoregressive pretraining for language understanding. In: CoRR abs/1906.08237 (2019). arXiv: 1906.08237. http://arxiv.org/abs/1906.08237.
Yu, J., et al.: 3D medical point transformer: introducing convolution to attention networks for medical point cloud analysis. In: (2021).
Zhou, C., et al.: PTTR: relational 3D point cloud object tracking with transformer. In: CoRR abs/2112.02857 (2021). arXiv: 2112.02857. https://arxiv.org/abs/2112.02857.
Wei, M., et al.: AGConv: adaptive graph convolution on 3D point clouds”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45.8, pp. 9374–9392 (2023). https://doi.org/10.1109/TPAMI.2023.3238516.
Simonovsky, M., Komodakis, N.: Dynamic edge-conditioned filters in convolutional neural networks on graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 2017.
Xu, Q., et al.: Grid-GCN for fast and scalable point cloud learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 2020.
Rusu, R.B., Cousins, S.: 3D is here: point cloud library (PCL). In: 2011 IEEE International Conference on Robotics and Automation, pp. 1–4 (2011). https://doi.org/10.1109/ICRA.2011.5980567.
Sun, Y., et al.: PGCNet: patch graph convolutional network for point cloud segmentation of indoor scenes. In: The Visual Computer 36.10 (2020).
Chen, L., Zhang, Q.: DDGCN: graph convolution network based on direction and distance for point cloud learning. In: The Visual Computer (2023).
Velikovi, P., et al. Graph attention networks. In: (2017).
Zhai, R., et al.: IAGC: interactive attention graph convolution network for semantic segmentation of point clouds in building indoor environment. ISPRS Int. J. Geo-Inf. 11 (2022).
Qiu, Q.: DGANet: a dilated graph attention-based network for local feature extraction on 3D point clouds. Remote Sens. 13 (2021).
Liu, X., et al.: SPU-net: self-supervised point cloud upsampling by coarseto-fine reconstruction with self-projection optimization (2020)
Song, Y., Shen, W., Peng, K.: A novel partial point cloud registration method based on graph attention network. In: The Visual Computer (2023).
Thrun, S., Wegbreit, B.: Shape from symmetry. In: Tenth IEEE International Conference on Computer Vision (ICCV’05), vol. 1, 2, pp. 1824–1831 (2005). https://doi.org/10.1109/ICCV.2005.221
Kazhdan, M., Hoppe, H.: Screened poisson surface reconstruction. In: ACM Trans. Graph. 32.3 (July 2013). https://doi.org/10.1145/2487228.2487237
Sung, M., et al.: Data-driven structural priors for shape completion. In: ACM Trans. Graph. 34.6 (Nov 2015). https://doi.org/10.1145/2816795.2818094
Stutz, D., Geiger, A.: Learning 3D shape completion from laserscan data with weak supervision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 2018.
Nguyen, D.T., et al.: A field model for repairing 3D shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 2016.
Liu, M., et al.: Morphing and sampling network for dense point cloud completion. In: Proceedings of the AAAI Conference on Artiffcial Intelligence, 34.07 (Apr 2020), pp. 11596–11603. https://doi.org/10.1609/aaai.v34i07.6827. https://ojs.aaai.org/index.php/AAAI/article/view/6827.
Liu, Q., et al.: PointALCR: adversarial latent GAN and contrastive regularization for point cloud completion. In: The Visual Computer (2022).
Yu, X., et al.: PoinTr: diverse point cloud completion with geometry aware transformers. In: (2021).
Xiang, P., et al.: SnowffakeNet: point cloud completion by snowffake point deconvolution with skip-transformer. In: (2021).
Chen, W., et al.: TransSC: transformer-based shape completion for grasp evaluation. In: (2021).
Zhou, H., et al.: SeedFormer: patch seeds based point cloud completion with upsample transformer. In: ArXiv abs/2207.10315 (2022). https://api.semanticscholar.org/CorpusID:250920848.
Zhang, W., et al.: Point cloud completion via skeleton-detail transformer. In: IEEE Trans. Vis. Comput. Graph. (Oct 2023).
Wen, X., et al.: Point cloud completion by skip-attention network with hierarchical folding. In: IEEE (2020).
Gadelha, M., Wang, R., Maji, S.: Multiresolution treenetworks for 3D point cloud processing. In: Proceedings of the European Conference on Computer Vision (ECCV). Sept 2018.