A carbon nanotubes based in situ multifunctional power assist system for restoring failed heart function
Tóm tắt
End-stage heart failure is a major risk of mortality. The conductive super-aligned carbon nanotubes sheets (SA-CNTs) has been applied to restore the structure and function of injured myocardium through tissue engineering, and developed as efficient cardiac pacing electrodes. However, the interfacial interaction between SA-CNTs and the surface cells is unclear, and it remains challenge to restore the diminished contraction for a seriously damaged heart. A concept of a multifunctional power assist system (MPS) capable of multipoint pacing and contraction assisting is proposed. This device is designed to work with the host heart and does not contact blood, thus avoiding long-term anticoagulation required in current therapies. Pacing electrode constructed by SA-CNTs promotes the epithelial-mesenchymal transition and directs the migration of pro-regenerative epicardial cells. Meanwhile, the power assist unit reveals an excellent frequency response to alternating voltage, with natural heart mimicked systolic/diastolic amplitudes. Moreover, this system exhibits an excellent pacing when attached to the surface of a rabbit heart, and presents nice biocompatibility in both in vitro and in vivo evaluation. This MPS provides a promising non-blood contact strategy to restore in situ the normal blood-pumping function of a failed heart.
Tài liệu tham khảo
Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Drazner MH, et al. 2013 ACCF/AHA guideline for the Management of Heart Failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. Circulation. 2013;128:1810–52. https://doi.org/10.1161/CIR.0b013e31829e8807.
Ghio S, Constantin C, Klersy C, Serio A, Fontana A, Campana C, et al. Interventricular and Intraventricular Dyssynchrony are common in heart failure patients, regardless of Qrs duration. Eur Heart J. 2004;25(7):571–8. https://doi.org/10.1016/j.ehj.2003.09.030.
Roger VL. Cardiovascular diseases in populations: secular trends and contemporary challenges-Geoffrey Rose lecture, European Society of Cardiology Meeting 2014 Eur. Heart J. 2015;36(32):2142–6. https://doi.org/10.1093/eurheartj/ehv220.
Bahit MC, Kochar A, Granger CB. Post-myocardial infarction heart failure. JACC Heart Fail. 2018;6:179–86. https://doi.org/10.1016/j.jchf.2017.09.015.
Stehlik J, Kobashigawa J, Hunt SA, Reichenspurner H, Kirklin JK. Honoring 50 years of clinical heart transplantation in circulation: in-depth state-of-the-art review. Circulation. 2018;137:71–87. https://doi.org/10.1161/CIRCULATIONAHA.117.029753.
Potena L, Zuckermann A, Barberini F, Aliabadi-Zuckermann A. Complications of cardiac transplantation. Curr Cardiol Rep. 2018;20:73. https://doi.org/10.1007/s11886-018-1018-3.
Uriel N, Adatya S, Mehra MR. Evolution in mechanical circulatory support: are we at the precipice of a disruptive innovation? J Am Coll Cardiol. 2015;66(23):2590–3. https://doi.org/10.1016/j.jacc.2015.10.028.
Kim JH, Cowger JA, Shah P. The evolution of mechanical circulatory support. Cardiol Clin. 2018;36(4):443–9. https://doi.org/10.1016/j.ccl.2018.06.011.
Rose EA, Gelijns AC, Moskowitz AJ, Heitjan DF, Stevenson LW, Dembitsky W, et al. Long-term use of a left ventricular assist device for end-stage heart failure. New Engl J Med. 2001;345:1435–43. https://doi.org/10.1056/NEJMoa012175.
Starling RC, Moazami N, Silvestry SC, Ewald G, Rogers JG, Milano CA, et al. Unexpected abrupt increase in left ventricular assist device thrombosis new Engl. J Med. 2014;370(1):33–40. https://doi.org/10.1056/NEJMoa1313385.
Feiner R, Engel L, Fleischer S, Malki M, Gal I, Shapira A, et al. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function Nat. Mater. 2016;15(6):679–85. https://doi.org/10.1038/nmat4590.
Mahmoudi M, Yu M, Serpooshan V, Wu JC, Langer R, Lee RT, et al. Multiscale Technologies for Treatment of ischemic cardiomyopathy. Nat Nanotechnol. 2017;12(9):845–55. https://doi.org/10.1038/nnano.2017.167.
Shin SR, Migliori B, Miccoli B, Li YC, Mostafalu P, Seo J, et al. Electrically driven microengineered bioinspired soft robots. Adv Mater. 2018;30. https://doi.org/10.1002/adma.201704189.
Paez-Mayorga J, Hernandez-Vargas G, Ruiz-Esparza GU, Iqbal HMN, Wang X, Zhang YS, et al. Bioreactors for cardiac tissue engineering. Adv Healthc Mater. 2019;8:e1701504. https://doi.org/10.1002/adhm.201701504.
Ren J, Xu Q, Chen X, Li W, Guo K, Zhao Y, et al. Superaligned carbon nanotubes guide oriented cell growth and promote electrophysiological homogeneity for synthetic cardiac tissues. Adv Mater. 2017;29. https://doi.org/10.1002/adma.201702713.
Guyette JP, Charest JM, Mills RW, Jank BJ, Moser PT, Gilpin SE, et al. Bioengineering human myocardium on native extracellular matrix Circ. Res. 2016;118(1):56–72. https://doi.org/10.1161/circresaha.115.306874.
Tiburcy M, Hudson JE, Balfanz P, Schlick S, Meyer T, Liao MLC, et al. Defined engineered human myocardium with advanced maturation for applications in heart failure modeling and repair. Circulation. 2017;135:1832–47. https://doi.org/10.1161/circulationaha.116.024145.
Wang Z, Lee SJ, Cheng HJ, Yoo JJ, Atala A. 3d bioprinted functional and contractile cardiac tissue constructs. Acta Biomater. 2018;70:48–56. https://doi.org/10.1016/j.actbio.2018.02.007.
Cao J, Poss KD. The epicardium as a hub for heart regeneration. Nat Rev Cardiol. 2018;15(10):631–47. https://doi.org/10.1038/s41569-018-0046-4.
Lepilina A, Coon AN, Kikuchi K, Holdway JE, Roberts RW, Burns CG, et al. A dynamic Epicardial injury response supports progenitor cell activity during Zebrafish heart regeneration. Cell. 2006;127:607–19. https://doi.org/10.1016/j.cell.2006.08.052.
Seeger T, Xu QF, Muhly-Reinholz M, Fischer A, Kremp EM, Zeiher AM, et al. Inhibition of Let-7 augments the recruitment of Epicardial cells and improves cardiac function after myocardial infarction. J Mol Cell Cardiol. 2016;94:145–52. https://doi.org/10.1016/j.yjmcc.2016.04.002.
Meilhac SM, Buckingham ME. The deployment of cell lineages that form the mammalian heart. Nat Rev Cardiol. 2018;15(11):705–24. https://doi.org/10.1038/s41569-018-0086-9.
McMurray JJV, Pfeffer MA. Heart failure. Lancet. 2005;365:1877–89. https://doi.org/10.1016/s0140-6736(05)66621-4.
van der Meer P, Gaggin HK, Dec GW. ACC/AHA versus ESC guidelines on heart failure: JACC guideline comparison J. Am Coll Cardiol. 2019;73(21):2756–68. https://doi.org/10.1016/j.jacc.2019.03.478.
Birnie DH, Tang ASL. The problem of non-response to cardiac resynchronization therapy. Curr Opin Cardiol. 2006;21(1):20–6. https://doi.org/10.1097/01.hco.0000198983.93755.99.
Trembley MA, Velasquez LS, Small EM. Epicardial outgrowth culture assay and ex vivo assessment of Epicardial-derived cell migration. J Vis Exp. 2016;(109). https://doi.org/10.3791/53750.
Ryu S, Lee P, Chou JB, Xu RZ, Zhao R, Hart AJ, et al. Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion. ACS Nano. 2015;9:5929–36. https://doi.org/10.1021/acsnano.5b00599.
Kumar S, Rani R, Dilbaghi N, Tankeshwar K, Kim KH. Carbon nanotubes: a novel material for multifaceted applications in human healthcare. Chem Soc Rev. 2017;46(1):158–96. https://doi.org/10.1039/c6cs00517a.
Sajid MI, Jamshaid U, Jamshaid T, Zafar N, Fessi H, Elaissari A. Carbon nanotubes from synthesis to in vivo biomedical applications Int. Aust J Pharm. 2016;501(1-2):278–99. https://doi.org/10.1016/j.ijpharm.2016.01.064.
Tilmaciu CM, Morris MC. Carbon nanotube biosensors. Front Chem. 2015;3. https://doi.org/10.3389/fchem.2015.00059.
Pan ZY, Ren J, Guan GZ, Fang X, Wang BJ, Doo SG, et al. Synthesizing nitrogen-doped Core-sheath carbon nanotube films for flexible lithium ion batteries. Adv Energy Mater. 2016;6. https://doi.org/10.1002/aenm.201600271.
Niu XZ, Peng SL, Liu LY, Wen WJ, Sheng P. Characterizing and patterning of PDMS-based conducting composites. Adv Mater. 2007;19:2682. https://doi.org/10.1002/adma.200602515.
Teo AJT, Mishra A, Park I, Kim YJ, Park WT, Yoon YJ. Polymeric biomaterials for medical implants and devices. ACS Biomater Sci Eng. 2016;2(4):454–72. https://doi.org/10.1021/acsbiomaterials.5b00429.
Thomson TM, Balcells C, Cascante M. Metabolic plasticity and epithelial-Mesenchymal transition. J Clin Med. 2019;8. https://doi.org/10.3390/jcm8070967.
Smith CL, Baek ST, Sung CY, Tallquist MD. Epicardial-derived cell epithelial-to-mesenchymal transition and fate specification require PDGF receptor signaling. Circ Res. 2011;108(12):E15–U28. https://doi.org/10.1161/circresaha.110.235531.
Sutton MGS, Sharpe N. Left ventricular remodeling after myocardial infarction - pathophysiology and therapy. Circulation. 2000;101:2981–8. https://doi.org/10.1161/01.Cir.101.25.2981.
Cohn JN, Ferrari R, Sharpe N, R. Int Forum Cardiac. Cardiac remodeling-concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. J Am Coll Cardiol. 2000;35:569–82. https://doi.org/10.1016/s0735-1097(99)00630-0.
Acerce M, Akdogan EK, Chhowalla M. Metallic molybdenum disulfide nanosheet-based electrochemical actuators. Nature. 2017;549:370. https://doi.org/10.1038/nature23668.
Lu C, Yang Y, Wang J, Fu RP, Zhao XX, Zhao L, et al. High-performance graphdiyne-based electrochemical actuators. Nat Commun. 2018;9. https://doi.org/10.1038/s41467-018-03095-1.
Terasawa N, Takeuchi I, Matsumoto H. Electrochemical properties and actuation mechanisms of actuators using carbon nanotube-ionic liquid gel sensor. Actuat B-Chem. 2009;139(2):624–30. https://doi.org/10.1016/j.snb.2009.03.057.
Yun Y, Shanov V, Tu Y, Schulz MJ, Yarmolenko S, Neralla S, et al. A multi-wall carbon nanotube tower electrochemical actuator. Nano Lett. 2006;6:689–93. https://doi.org/10.1021/nl052435w.
Pasipoularides A. Clinical assessment of ventricular ejection dynamics with and without outflow obstruction J. Am Coll Cardiol. 1990;15(4):859–82. https://doi.org/10.1016/0735-1097(90)90287-y.
Saxena T, Patidar S, Saxena M. Assessment of left ventricular ejection force and sympathetic skin response in normotensive and hypertensive subjects: a double-blind observational comparative case-control study. Indian Heart J. 2016;68(5):685–92. https://doi.org/10.1016/j.ihj.2015.12.005.
Frackowiak E, Metenier K, Bertagna V, Beguin F. Supercapacitor electrodes from multiwalled carbon nanotubes. Appl Phys Lett. 2000;77(15):2421–3. https://doi.org/10.1063/1.1290146.
Ren J, Li L, Chen C, Chen XL, Cai ZB, Qiu LB, et al. Twisting carbon nanotube fibers for both wire-shaped micro-Supercapacitor and micro-battery. Adv Mater. 2013;25(8):1155–9. https://doi.org/10.1002/adma.201203445.
Ricci DR, Orlick AE, Alderman EL, Ingels NB Jr, Daughters GT 2nd, Stinson EB. Influence of heart rate on left ventricular ejection fraction in human beings am. J Cardiol. 1979;44(3):447–51. https://doi.org/10.1016/0002-9149(79)90395-3.
Li JZ, Ma WJ, Song L, Niu ZG, Cai L, Zeng QS, et al. Superfast-response and ultrahigh-power-density electromechanical actuators based on hierarchal carbon nanotube electrodes and chitosan. Nano Lett. 2011;11:4636–41. https://doi.org/10.1021/nl202132m.
Wu G, Wu XJ, Xu YJ, Cheng HY, Meng JK, Yu Q, et al. High-performance hierarchical black-phosphorous-based soft electrochemical actuators in bioinspired applications. Adv Mater. 2019;31:11. https://doi.org/10.1002/adma.201806492.