Một bài đánh giá ngắn về tính công bằng trong thuật toán

Management System Engineering - Tập 1 - Trang 1-13 - 2022
Yishi Zhang1,2, Ruilin Zhu3, Xiaomeng Wang1,2
1Research Institute of Digital Governance and Management Decision Innovation, Wuhan University of Technology, Wuhan, China
2School of Management, Wuhan University of Technology, Wuhan, China
3Management School, Lancaster University, Lancaster, UK

Tóm tắt

Các thuật toán học máy được sử dụng rộng rãi trong các hệ thống quản lý ở nhiều lĩnh vực khác nhau, chẳng hạn như tuyển dụng nhân viên, cung cấp khoản vay, chẩn đoán bệnh, v.v., và thậm chí trong một số lĩnh vực quyết định có rủi ro, đóng vai trò ngày càng quan trọng trong những quyết định ảnh hưởng đến đời sống con người và sự phát triển xã hội. Tuy nhiên, việc sử dụng các thuật toán cho việc ra quyết định tự động có thể gây ra những thiên lệch không mong muốn dẫn đến phân biệt đối xử với một số nhóm cụ thể. Trong bối cảnh này, việc phát triển các thuật toán học máy không chỉ chính xác mà còn công bằng là rất quan trọng. Có một cuộc thảo luận phong phú về tính công bằng của thuật toán trong tài liệu hiện có. Nhiều học giả đã đề xuất và thử nghiệm các định nghĩa về tính công bằng và cố gắng giải quyết vấn đề bất công hoặc phân biệt đối xử trong các thuật toán. Bài đánh giá này nhằm phác thảo các định nghĩa khác nhau về tính công bằng của thuật toán và giới thiệu quy trình xây dựng các thuật toán công bằng để nâng cao tính công bằng trong học máy. Đầu tiên, bài đánh giá này phân chia các định nghĩa về tính công bằng của thuật toán thành hai loại, đó là tính công bằng dựa trên nhận thức và tính công bằng dựa trên lý trí, và thảo luận về các khái niệm và quan niệm về tính công bằng trong thuật toán đại diện hiện có dựa trên hai loại này. Sau đó, các chỉ số để xác định sự bất công/phân biệt đối xử được tổng hợp và các phương pháp loại bỏ sự bất công/phân biệt đối xử khác nhau được thảo luận để tạo điều kiện hiểu biết rõ hơn về cách tính công bằng của thuật toán có thể được thực hiện trong các kịch bản khác nhau. Cuối cùng, bài viết kết luận về những thách thức và hướng nghiên cứu tương lai trong lĩnh vực tính công bằng của thuật toán.

Từ khóa

#Business and Management #general

Tài liệu tham khảo

Adel, T., I. Valera, Z. Ghahramani, and A. Weller. 2019. One-network adversarial fairness. Proceedings of the 3rd Conference AAAI on Artificial Intelligence 33: 2412–2420. Avin, C., I. Shpitser, and J. Pearl 2005. Identifiability of Path-Specific Effects. In Proceedings of the 19th International Joint Conference on Artificial Intelligence, IJCAI’05, San Francisco, CA, USA, pp. 357-363. Morgan Kaufmann Publishers Inc. Barocas, S., and A.D. Selbst. 2016. Big data’s disparate impact. California Law Review 104 (3): 671–732. https://doi.org/10.2139/ssrn.2477899. Bellamy, R.K.E., K. Dey, M. Hind, S.C. Hoffman, S. Houde, K. Kannan, P. Lohia, J. Martino, S. Mehta, A. Mojsilovic, S. Nagar, K.N. Ramamurthy, J. Richards, D. Saha, P. Sattigeri, M. Singh, K.R. Varshney, and Y. Zhang. 2018. AI Fairness 360: An Extensible Toolkit for Detecting, Understanding, and Mitigating Unwanted Algorithmic Bias. arXiv:1810.01943. Beretta, E., A. Santangelo, B. Lepri, A. Vetró, and J.C. De Martin. 2019. The invisible power of fairness. How machine learning shapes democracy. arXiv:1903.09493. Bickel, P.J., E.A. Hammel, and J.W. O’Connell. 1975. Sex Bias in Graduate Admissions: data from Berkeley: measuring bias is harder than is usually assumed, and the evidence is sometimes contrary to expectation. Science 187 (4175): 398–404. Brown, D.P., C. Knapp, K. Baker, and M. Kaufmann. 2016. Using Bayesian imputation to assess racial and ethnic disparities in pediatric performance measures. Health Services Research 51 (3): 1095–1108. Calders, T., and S. Verwer. 2010. Three Naive Bayes approaches for discrimination-free classification. Data Mining and Knowledge Discovery 21 (2): 277–292. Calmon, F.P., D. Wei, K.N. Ramamurthy, and K.R. Varshney. 2017, April. Optimized Data Pre-Processing for Discrimination Prevention. arXiv:1704.03354. Carey, A.N., and X. Wu. 2022. The Causal fairness field guide: perspectives from social and formal sciences. Frontiers in Big Data 5: 892837. Caton, S. and C. Haas. 2020. Fairness in machine learning: a survey. arXiv:2010.04053. Chen, J., N. Kallus, X. Mao, G. Svacha, and M. Udell 2019. Fairness under unawareness: Assessing disparity when protected class is unobserved. In Proceedings of the Conference on Fairness, Accountability, and Transparency, New York, NY, USA, pp. 339-348. Association for Computing Machinery. Cheng, L., K.R. Varshney, and H. Liu. 2021. Socially Responsible AI Algorithms: Issues, Purposes, and Challenges. arXiv:2101.02032. Cheng, M., M. De-Arteaga, L. Mackey, and A.T. Kalai 2021. Are You Man Enough? Even Fair Algorithms Conform to Societal Norms. In 38th ICML Workshop on Socially Responsible Machine Learning, pp. 7. Cheng, L., S. Ge, and H. Liu. 2022. Toward Understanding Bias Correlations for Mitigation in NLP. arXiv:2205.12391. Chiappa, S. 2019. Path-Specific Counterfactual Fairness. In the 33rd AAAI Conference on Artificial Intelligence, 7801–7808. Honolulu. Chouldechova, A. 2017. Fair prediction with disparate impact: a study of bias in recidivism prediction instruments. Big Data 5 (2): 153–163. Corbett-Davies, S., E. Pierson, A. Feller, S. Goel, and A. Huq 2017, August. Algorithmic Decision Making and the Cost of Fairness. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax NS Canada, pp. 797–806. ACM. d’Alessandro, B., C. O’Neil, and T. LaGatta. 2017. Conscientious classification: a data scientist’s guide to discrimination-aware classification. Big Data 5 (2): 120–134. Danks, D. and A.J. London 2017. Algorithmic Bias in Autonomous Systems. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, Melbourne, Australia, pp. 4691–4697. Dwork, C., Hardt, M., Pitassi, T., Reingold, O., and Zemel, R. 2012. Fairness through Awareness. In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, New York, NY, USA, pp. 214-226. Association for Computing Machinery. Editorial. 2016. September. More accountability for big-data algorithms. Nature 537 (7621): 449–449. Elliott, M.N., P.A. Morrison, A. Fremont, D.F. McCaffrey, P. Pantoja, and N. Lurie. 2009. Using the Census Bureau’s surname list to improve estimates of race/ethnicity and associated disparities. Health Services and Outcomes Research Methodology 9 (2): 69–83. Feldman, M., S.A. Friedler, J. Moeller, C. Scheidegger, and S. Venkatasubramanian 2015. Certifying and Removing Disparate Impact. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney NSW Australia, pp. 259–268. ACM. Galles, D. and Pearl, J. 2013. Testing Identifiability of Causal Effects. arXiv:1302.4948. Garg, S., V. Perot, N. Limtiaco, A. Taly, E.H. Chi, and A. Beutel. 2019. Counterfactual fairness in text classification through robustness. Gelfand, M.J., M. Higgins, L.H. Nishii, J.L. Raver, A. Dominguez, F. Murakami, S. Yamaguchi, and M. Toyama. 2002. Culture and egocentric perceptions of fairness in conflict and negotiation. Journal of Applied Psychology 87 (5): 833–845. Hardt, M., E. Price, and N. Srebro. 2016. Equality of Opportunity in Supervised Learning. arXiv:1610.02413. Hasnain-Wynia, R., D.M. Weber, J.C. Yonek, J. Pumarino, and J.N. Mittler. 2012. Community-level interventions to collect race/ethnicity and language data to reduce disparities. The American Journal of Managed Care 18 (6 Suppl): s141-147. Huan, W., Y. Wu, L. Zhang, and X. Wu 2020. Fairness through Equality of Effort, pp. 743–751. New York, NY, USA: Association for Computing Machinery. Huang, W., Y. Wu, and X. Wu. 2020. Multi-cause discrimination analysis using potential outcomes. In Social, Cultural, and Behavioral Modeling, ed. R. Thomson, H. Bisgin, C. Dancy, A. Hyder, and M. Hussain, 224–234. Cham: Springer International Publishing. Judea, P. 2009. Causality: Models. Reasoning and Inference: Cambridge University Press. Jung, J., C. Concannon, R. Shroff, S. Goel, and D.G. Goldstein. 2017. Simple rules for complex decisions. arXiv:1702.04690. Kallus, N., X. Mao, and A. Zhou. 2022. Assessing algorithmic fairness with unobserved protected class using data combination. Management Science 68 (3): 1959–1981. Kamiran, F. and Calders, T. 2009. Classifying without discriminating. In Proceedings of the 2nd International Conference on Computer, Control and Communication, Karachi, Pakistan, pp. 1–6. IEEE. Kamiran, F., and T. Calders. 2012. Data preprocessing techniques for classification without discrimination. Knowledge and Information Systems 33 (1): 1–33. Kamiran, F., T. Calders, and M. Pechenizkiy 2010. Discrimination Aware Decision Tree Learning. In Proceedings of 2010 IEEE International Conference on Data Mining, Sydney, Australia, pp. 869–874. IEEE. Kamishima, T., S. Akaho, H. Asoh, and J. Sakuma. 2012. Fairness-Aware Classifier with Prejudice Remover Regularizer, In Machine Learning and Knowledge Discovery in Databases, eds. Hutchison, D., T. Kanade, J. Kittler, J.M. Kleinberg, F. Mattern, J.C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M.Y. Vardi, G. Weikum, P.A. Flach, T. De Bie, and N. Cristianini, Volume 7524, 35–50. Berlin, Heidelberg: Springer Berlin Heidelberg. Series Title: Lecture Notes in Computer Science. Khademi, A., S. Lee, D. Foley, and V. Honavar 2019. Fairness in algorithmic decision making: An excursion through the lens of causality. In Proceedings of the 2019 World Wide Web Conference, WWW ’19, New York, NY, USA, pp. 2907–2914. Association for Computing Machinery. Kilbertus, N., M. Gomez-Rodriguez, B. Schölkopf, K. Muandet, and I. Valera. 2020. Fair Decisions Despite Imperfect Predictions. arXiv:1902.02979. Kleinberg, J., S. Mullainathan, and M. Raghavan. 2016. Inherent Trade-Offs in the Fair Determination of Risk Scores. arXiv:1609.05807. Kusner, M.J., J.R. Loftus, C. Russell, and R. Silva. 2018. Counterfactual Fairness. arXiv:1703.06856. Lambrecht, A., and C.E. Tucker. 2019. Algorithmic Bias? An empirical study into apparent gender-based discrimination in the display of STEM career ads. Management Science 65 (7): 2947–3448. Lepri, B., N. Oliver, E. Letouzé, A. Pentland, and P. Vinck. 2018. December fair, transparent, and accountable algorithmic decision-making processes: the premise, the proposed solutions, and the open challenges. Philosophy & Technology 31 (4): 611–627. Loftus, J.R., C. Russell, M.J. Kusner, and R. Silva. 2018. Causal Reasoning for Algorithmic Fairness. arXiv:1805.05859. Lum, K. and Johndrow, J. 2016. A statistical framework for fair predictive algorithms. arXiv:1610.08077. Luong, B.T., S. Ruggieri, and F. Turini 2011. k-NN as an implementation of situation testing for discrimination discovery and prevention. In Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining—KDD ’11, San Diego, California, USA, pp. 502. ACM Press. Makhlouf, K., S. Zhioua, and C. Palamidessi. 2022. Survey on Causal-based Machine Learning Fairness Notions. arXiv:2010.09553. Mehrabi, N., F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan. 2021. A survey on bias and fairness in machine learning. ACM Computing Surveys 54 (6): 1–35. Nabi, R. and I. Shpitser 2018. Fair inference on outcomes. In Proceedings of the Thirty-second AAAI Conference on Artificial Intelligence, pp. 1931–1940. AAAI. Niu, Y., K. Tang, H. Zhang, Z. Lu, X.S. Hua, and J.R. Wen 2021. Counterfactual VQA: A Cause-Effect Look at Language Bias. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, pp. 12695–12705. IEEE. Pearl, J. 2009. Causal inference in statistics: an overview. Statistics Surveys 3: 96–146. Pearl, J. 2012. The causal mediation formula-a guide to the assessment of pathways and mechanisms. Prevention Science 13 (4): 426–436. Pearl, J. 2012. The mediation formula: a guide to the assessment of causal pathways in nonlinear models. In Wiley series in probability and statistics, 1st ed., ed. C. Berzuini, P. Dawid, and L. Bernardinelli, 151–179. Wiley. Pearl, J., and D. Mackenzie. 2018. The book of why: the new science of cause and effect. UK: Allen Lane. Pearl, J., M. Glymour, and N.P. Jewell. 2016. Causal inference in statistics: a primer. Chichester: John Wiley & Sons Ltd. Pessach, D., and E. Shmueli. 2023. A review on fairness in machine learning. ACM Computing Surveys 55 (3): 1–44. Pleiss, G., M. Raghavan, F. Wu, J. Kleinberg, and K.Q. Weinberger. 2017. On Fairness and Calibration. arXiv:1709.02012. Saxena, N.A., K. Huang, E. DeFilippis, G. Radanovic, D.C. Parkes, and Y. Liu 2019. How Do Fairness Definitions Fare?: Examining Public Attitudes Towards Algorithmic Definitions of Fairness. In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, Honolulu HI USA, pp. 99–106. ACM. Shpitser, I. and Pearl, J. 2007. What Counterfactuals Can Be Tested. In Proceedings of the 23rd Conference on Uncertainty in Artificial Intelligence, Vancouver, BC, Canada, pp. 352–359. Shpitser, I. and J. Pearl. 2012. Identification of Conditional Interventional Distributions. arXiv:1206.6876. Teodorescu, M., L. Morse, Y. Awwad, and G. Kane. 2021. Failures of fairness in automation require a deeper understanding of human-ML augmentation. MIS Quarterly 45 (3): 1483–1500. Verma, S. 2019. Weapons of math destruction how big data increases: inequality and threatens democracy. Vikalpa: The Journal for Decision Makers 44 (2): 97–98. Žliobaite, I., F. Kamiran, and T. Calders 2011. Handling Conditional Discrimination. In Proceedings of the 11th International Conference on Data Mining, Vancouver, BC, Canada, pp. 992–1001. IEEE. Wu, Y., L. Zhang, and X. Wu 2018. On Discrimination Discovery and Removal in Ranked Data using Causal Graph. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London United Kingdom, pp. 2536–2544. ACM. Wu, Y., L. Zhang, and X. Wu 2019a. Counterfactual Fairness: Unidentification, Bound and Algorithm. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, Macao, China, pp. 1438–1444. Wu, Y., L. Zhang, X. Wu, and H. Tong 2019b. PC-Fairness: a unied framework for measuring causality-based fairness. In PRoceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS), Volume 32, Vancouver. Xu, R., P. Cui, K.Kuang, B. Li, L. Zhou, Z. Shen, and W. Cui 2020. Algorithmic Decision Making with Conditional Fairness. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Virtual Event CA USA, pp. 2125–2135. ACM. Yang, Z.K. and J. Feng 2020. A causal inference method for reducing gender bias in word embedding relations. In Proceedings of the 34th AAAI Conference on Artificial Intelligence, Volume 34, pp. 9434–9441. AAAI. Zafar, M.B., I. Valera, M.G. Rodriguez, and K.P. Gummadi 2017a. Fairness Beyond Disparate Treatment & Disparate Impact: Learning Classification without Disparate Mistreatment. In Proceedings of the 26th International Conference on World Wide Web, pp. 1171–1180. arXiv:1610.08452. Zafar, M.B., I. Valera, M.G. Rodriguez, and K.P. Gummadi. 2017b. Fairness constraints: mechanisms for fair classification. arXiv:1507.05259. Zhang, Y. 2018. Assessing fair lending risks using race/ethnicity proxies. Management Science 64 (1): 178–197. Zhang, L., Y. Wu, and X. Wu. 2016a. On Discrimination Discovery Using Causal Networks, In Social, Cultural, and Behavioral Modeling, eds. Xu, K.S., D. Reitter, D. Lee, and N. Osgood, Volume 9708, 83–93. Cham: Springer International Publishing. Series Title: Lecture Notes in Computer Science. Zhang, L., Y. Wu, and X. Wu 2016b. Situation Testing-Based Discrimination Discovery: A Causal Inference Approach. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI’16, pp. 2718–2724. Zhang, L., Y. Wu, and X. Wu 2017. A Causal Framework for Discovering and Removing Direct and Indirect Discrimination. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, Melbourne, Australia, pp. 3929–3935. Zhang, L., Y. Wu, and X. Wu. 2019. Causal modeling-based discrimination discovery and removal: criteria, bounds, and algorithms. IEEE Transactions on Knowledge and Data Engineering 31 (11): 2035–2050.