A brief historical perspective of the Wiener–Hopf technique
Tóm tắt
Từ khóa
Tài liệu tham khảo
http://www.en.wikipedia.org/wiki/Norbert_Wiener (Accessed on 24 September 2007)
Wiener N (1956). I am a Mathematician. Doubleday & Co., Inc.
Wiener N and Hopf E (1931). Über eine klasse singulärer integralgleichungen. Sem–Ber Preuss Akad Wiss 31: 696–706
Noble B (1988). Methods based on the Wiener–Hopf Technique, 2nd edn. Chelsea Publishing Company, New York
Carrier GF, Krook M and Pearson CE (2005). Functions of a complex variable. SIAM Publishing, Philadelphia
Muskhelishvili NI (1953). Singular integral equations, Translated from second edition Moscow (1946) by J.R.M. Radok. Noordhoff, Groningen
Hopf E (1934). Mathematical problems of radiative equilibrium. Cambridge Tract 31, Cambridge University Press, Cambridge
http://www.history.mcs.st-andrews.ac.uk/Biographies/Hopf_Eberhard.html (Accessed on 24 September 2007)
Copson ET (1946). On an integral equation arising in the theory of diffraction. Quart J Math 17: 19–34
Carlson JF and Heins AE (1947). The reflection of an electromagnetic plane wave by an infinite set of plates, I. Quart Appl Math 4: 313–329
Carlson JF and Heins AE (1947). The reflection of an electromagnetic plane wave by an infinite set of plates, II. Quart Appl Math 5: 82–88
Levine H and Schwinger J (1948). On the radiation of sound from an unflanged circular pipe. Phys Rev 73: 383–406
Jones DS (1952). A simplifying technique in the solution of a class of diffraction problems. Quart J Math 3: 189–196
http://www.history.mcs.st-andrews.ac.uk/Biographies/Sneddon.html (Accessed on 24 September 2007)
Heins AE (1950) Systems of Wiener–Hopf equations. In: Proceedings of Symposia in Applied Mathematics II. McGraw-Hill, pp 76–81
Khrapkov AA (1971). Certain cases of the elastic equilibrium of an infinite wedge with a non-symmetric notch at the vertex, subjected to concentrated forces. Appl Math Mech (PMM) 35: 625–637
Khrapkov AA (1971). Closed form solutions of problems on the elastic equilibrium of an infinite wedge with nonsymmetric notch at the apex. Appl Math Mech (PMM) 35: 1009–1016
Daniele VG (1978). On the factorization of Wiener-Hopf matrices in problems solvable with Hurd’s method. IEEE Trans Antennas Propagat 26: 614–616
Rawlins AD (1975). The solution of a mixed boundary value problem in the theory of diffraction by a semi-infinite plane. Proc Roy Soc London A 346: 469–484
Idemen M (1979). A new method to obtain exact solutions of vector Wiener–Hopf equations. Zeit Angew Math Mech 59: 656–658
Williams WE (1984). Recognition of some readily “Wiener–Hopf” factorizable matrices. IMA J Appl Math 32: 367–378
Jones DS (1984). Commutative Wiener–Hopf factorization of a matrix. Proc Roy Soc Lond A 393: 185–192
Veitch BH and Abrahams ID (2007). On the commutative factorization of n × n matrix Wiener–Hopf kernels with distinct eigenvalues. Proc Roy Soc London A 463: 613–639
Abrahams ID (1997). On the solution of Wiener-Hopf problems involving noncommutative matrix kernel decompositions. SIAM J Appl Math 57: 541–567
Koiter WT (1954). Approximate solution of Wiener–Hopf type integral equations with applications, parts I–III. Koninkl Ned Akad Wetenschap Proc B 57: 558–579
Kranzer HC and Radlow J (1962). Asymptotic factorization for perturbed Wiener–Hopf problems. J Math Anal Appl 4: 240–256
Kranzer HC and Radlow J (1965). An asymptotic method for solving perturbed Wiener–Hopf problems. J Math Mech 14: 41–59
Abrahams ID and Wickham GR (1990). General Wiener–Hopf factorization of matrix kernels with exponential phase factors. SIAM J Appl Math 50: 819–838
Abrahams ID (2000). The application of Padé approximants to Wiener–Hopf factorization. IMA J Appl Math 65: 257–281
Abrahams ID (1996). Radiation and scattering of waves on an elastic half-space; a noncommutative matrix Wiener–Hopf problem. J Mech Phys Solids 44: 2125–2154
Abrahams ID (2002). On the application of the Wiener–Hopf technique to problems in dynamic elasticity. Wave Motion 36: 311–333
Owen GW and Abrahams ID (2006). Elastic wave radiation from a high frequency finite-length transducer. J Sound Vib 298: 108–131
Lawrie JB and Guled IMM (2006). On tuning a reactive silencer by vaying the position of an internal membrane. J Acoust Soc Amer 120: 780–790
Maliuzhinets GD (1958). Excitation, reflection and emission of surface waves from a wedge with given face impedances. Soviet Phys Doklady 3: 752–755
Williams WE (1959). Diffraction of an E-polarized plane wave by an imperfectly conducting wedge. Proc R Soc Lond A 252: 376–393
Abrahams ID and Lawrie JB (1995). On the factorization of a class of Wiener–Hopf kernels. IMA J Appl Math 55: 35–47
Daniele VG (2003). The Wiener–Hopf technique for impenetrable wedges having arbitrary aperture angle. SIAM J Appl Math 63: 1442–1460
Daniele VG and Lombardi G (2006). Wiener–Hopf Solution for impenetrable wedges at skew incidence. IEEE Trans Antenn Prop 54: 2472–2485
Osipov AV and Norris AN (1999). The Malyuzhinets theory for scattering from wedge boundaries: a review. Wave Motion 29: 313–340
Budaev B (1995). Diffraction by wedges. Longman Scientific, London
Bernard JML (1998). Diffraction at skew incidence by an anisotropic impedance wedge in electromagnetism theory; a new class of canonical cases. J Phys A: Math Gen 31: 595–613
Osipov AV (2004) A hybrid technique for the analysis of scattering by impedance wedges. In: Proceedings of URSI Int Symp Electromagn Theory Pisa, Vol. 2, pp. 1140–1142
Lyalinov MA and Zhu NY (2003). Exact solution to diffraction problem by wedges with a class of anisotropic impedance faces: oblique incidence of a plane electromagnetic wave. IEEE Trans Antennas Propag 51: 1216–1220
Abrahams ID and Lawrie JB (1995). Travelling waves on a membrane: reflection and transmission at a corner of arbitrary angle, I. Proc R Soc London A 451: 657–683
Osipov AV (1996). Diffraction by a wedge with higher-order boundary conditions. Radio Sci 31: 1705–1720
Norris AN and Osipov AV (1997). Structural and acoustical wave interaction at a wedge-shaped junction of fluid-loaded plates. J Acoust Soc Amer 101: 867–876
Smyshlyaev VP (1993). The high-frequency diffraction of electromagnetic waves by cones of arbitrary cross sections. SIAM J Appl Math 53: 670–688
Babich VM, Dement’ev DB, Samokish BA and Smyshlyaev VP (2000). On evaluation of the diffraction coefficients for arbitrary ‘nonsingular’ directions of a smooth convex cone. SIAM J Appl Math 60: 536–573
Bernard JML and Lyalinov MA (2001). Spectral domain solution and asymptotics for the diffraction by an impedance cone. IEEE Trans Antennas Propagat 49: 1633–1637
Antipov YA (2002). Diffraction of a plane wave by a circular cone with an impedance boundary condition. SIAM J Appl Math 62: 1122–1152
Kuiken HK (1985). Edge effects in crystal growth under intermediate diffusive-kinetic control. IMA J Appl Math 35: 117–129
Boersma J, Indenkleef JJE and Kuiken HK (1984). A diffusion problem in semconductor technology. J Eng Math 18: 315–333
Mysak LA and LeBlond PH (1972). The scattering of Rossby waves by a semi-infinite barrier. J Phys Oceanogr 2: 108–114