A bridge principle for minimal and constant mean curvature submanifolds ofR N
Tài liệu tham khảo
[A] Allard, W.K.: On the first variation of a varifold. Ann. Math. 95, 417–491 (1972)
[A, S] Almgren, F.J., Solomon, B.: How to connect minimal surfaces by bridges. Am. Math. Soc. [Abstracts] April, 1980, p. 255
[Au] Aubin, T.: Nonlinear Analysis on Manifolds. Monge-Ampere Equations. Berlin Heidelberg New York: Springer 1982
[B] Berger, M.: Nonlinearity and Functional Analysis. New York: Academic Press 1970
[C] Courant, R.: Dirichlet's Principle, Conformal Mapping and Minimal Surfaces. New York: Interscience, 1950
[DoC] doCarmo, M.: Differential Geometry of Curves and Surfaces. Eaglewood Cliffs, New Jersey: Prentice Hall Inc 1976
[G, T] Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Berlin Heidelberg New York: Springer 1977
[H] Hass, J.: The geometry of the slice-ribbon problem. Math. Proc. Camb. Philos. Soc.94, 101–108 (1983)
[Ka] Kapouleas, N.: Complete constant mean curvature surfaces. in Euclidean 3-space (Preprint)
[Kr] Kruskal, M.: The bridge theorem for minimal surfaces. Comm. Pure Appl. Math.7, 297–316 (1954)
[La] Lang, S.: Real Analysis. Redding, MA: Addison Wesley 1983
[Law] Lawson, H.B.: Lectures on Minimal Submanifolds. Vol. 1. Boston: Publish or Perish Inc. 1980
[M, Y] Meeks, W.H., Yau, S.T.: The existence of embedded minimal surfaces and the problem of uniqueness. Math. Z.179, 151–168 (1982)
[M, S] Michael, J.H., Simon, L.: Sobolev and mean value inequalities on generalized submanifolds ofR n. Comm. Pure Appl. Math.26, 361–397 (1983)
[M] Morrey, C.B.: Multiple Integrals in the Calculus of Variations. Berlin Heidelberg New York: Springer 1966
[N] Nitsche, J.C.C.: Vorlesungen über Minimalflächen. Berlin Heidelberg New York: Springer 1975
[T] Taubes, C.H.: Self-dual Yang-Mills connections on non-selfdual 4-manifolds. J. Diff. Geom.17, 139–170 (1982)