A bridge connecting Lebesgue and Morrey spaces via Riesz norms

Jin Tao1, Dachun Yang1, Wen Yuan1
1Laboratory of Mathematics and Complex Systems (Ministry of Education of China), School of Mathematical Sciences, Beijing Normal University, Beijing 100875, People’s Republic of China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aalto, D., Berkovits, L., Kansanen, O.E., Yue, H.: John–Nirenberg lemmas for a doubling measure. Stud. Math. 204(1), 21–37 (2011)

Adams D.R.: Morrey spaces. Lecture Notes in Applied and Numerical Harmonic Analysis, pp. xv+121. Birkhäuser/Springer, Cham (2015)

Adams, D.R., Xiao, J.: Morrey spaces in harmonic analysis. Ark. Mat. 50(2), 201–230 (2012)

Alabalik, A., Almeida, A., Samko, S.: On the invariance of certain vanishing subspaces of Morrey spaces with respect to some classical operators. Banach J. Math. Anal. 14(3), 987–1000 (2020)

Berkovits, L., Kinnunen, J., Martell, J.M.: Oscillation estimates, self-improving results and good-$$\lambda $$ inequalities. J. Funct. Anal. 270(9), 3559–3590 (2016)

Blasco O., Espinoza-Villalva C.: The norm of the characteristic function of a set in the John–Nirenberg space of exponent $$p$$. Math. Methods Appl. Sci. 43(16), 9327–9336 (2020)

Blasco, O., Ruiz, A., Vega, L.: Non-interpolation in Morrey-Campanato and block spaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 28(1), 31–40 (1999)

Campanato, S.: Proprietà di una famiglia di spazi funzionali. Ann. Scuola Norm. Sup. Pisa (3) 18, 137–160 (1964)

Campanato, S.: Su un teorema di interpolazione di G. Stampacchia. Ann. Scuola Norm. Sup. Pisa (3) 20, 649–652 (1966)

Chiarenza, F., Frasca, M.: Morrey spaces and Hardy–Littlewood maximal function. Rend. Mat. Appl. (7) 7(3–4), 273–279 (1987)

Coifman, R.R., Weiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83(4), 569–645 (1977)

Dafni, G., Hytönen, T., Korte, R., Yue, H.: The space $$JN_p$$: nontriviality and duality. J. Funct. Anal. 275(3), 577–603 (2018)

Di Fazio, G., Ragusa, M.A.: Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients. J. Funct. Anal. 112(2), 241–256 (1993)

Duoandikoetxea J.: Fourier analysis. Graduate Studies in Mathematics, vol. 29, pp. xviii+222. American Mathematical Society, Providence, RI (2001)

Franchi, B., Pérez, C., Wheeden, R.L.: Self-improving properties of John-Nirenberg and Poincaré inequalities on spaces of homogeneous type. J. Funct. Anal. 153(1), 108–146 (1998)

Hakim, D.I.: Complex interpolation of predual spaces of general local Morrey-type spaces. Banach J. Math. Anal. 12(3), 541–571 (2018)

Hakim, D.I., Sawano, Y.: Calderón’s first and second complex interpolations of closed subspaces of Morrey spaces. J. Fourier Anal. Appl. 23(5), 1195–1226 (2017)

Hurri-Syrjänen, R., Marola, N., Vähäkangas, A.V.: Aspects of local-to-global results. Bull. Lond. Math. Soc. 46(5), 1032–1042 (2014)

John, F., Nirenberg, L.: On functions of bounded mean oscillation. Comm. Pure Appl. Math. 14, 415–426 (1961)

Kato, T.: Strong solutions of the Navier–Stokes equation in Morrey spaces. Bol. Soc. Brasil. Mat. (N. S.) 22(2), 127–155 (1992)

Liang, Y., Yang, D.: Musielak-Orlicz Campanato spaces and applications. J. Math. Anal. Appl. 406(1), 307–322 (2013)

Liang, Y., Nakai, E., Yang, D., Zhang, J.: Boundedness of intrinsic Littlewood-Paley functions on Musielak-Orlicz Morrey and Campanato spaces. Banach J. Math. Anal. 8(1), 221–268 (2014)

MacManus, P., Pérez, C.: Generalized Poincaré inequalities: sharp self-improving properties. Int. Math. Res. Notices 1998(2), 101–116 (1998)

Marola, N., Saari, O.: Local to global results for spaces of BMO type. Math. Z. 282(1–2), 473–484 (2016)

Mastyło, M., Sawano, Y.: Complex interpolation and Calderón-Mityagin couples of Morrey spaces. Anal. PDE 12(7), 1711–1740 (2019)

Mastyło, M., Sawano, Y., Tanaka, H.: Morrey-type space and its Köthe dual space. Bull. Malays. Math. Sci. Soc. 41(3), 1181–1198 (2018)

Milman, M.: Marcinkiewicz spaces, Garsia–Rodemich spaces and the scale of John–Nirenberg self improving inequalities. Ann. Acad. Sci. Fenn. Math. 41(1), 491–501 (2016)

Morrey Jr., C.B.: On the solutions of quasi-linear elliptic partial differential equations. Trans. Am. Math. Soc. 43(1), 126–166 (1938)

Nakai, E.: The Campanato, Morrey and Hölder spaces on spaces of homogeneous type. Stud. Math. 176(1), 1–19 (2006)

Nakai, E.: Singular and fractional integral operators on preduals of Campanato spaces with variable growth condition. Sci. China Math. 60(11), 2219–2240 (2017)

Nakai, E., Sawano, Y.: Hardy spaces with variable exponents and generalized Campanato spaces. J. Funct. Anal. 262(9), 3665–3748 (2012)

Nakamura, S., Sawano, Y.: New function spaces related to Morrey spaces and the Fourier transform. Banach J. Math. Anal. 12(1), 1–30 (2018)

Riesz, F.: Untersuchungen über systeme integrierbarer funktionen, (German). Math. Ann. 69(4), 449–497 (1910)

Sawano, Y., Di Fazio, G., Hakim, D.: Morrey Spaces: Introduction and Applications to Integral Operators and PDE’s. Volumes I & II. Chapman and Hall/CRC, New York (2020)

Shen, Z.: Boundary value problems in Morrey spaces for elliptic systems on Lipschitz domains. Am. J. Math. 125(5), 1079–1115 (2003)

Sun J., Xie G., Yang D.: local John–Nirenberg–Campanato spaces. Anal. Math. Phys. (2020)

Tao, J., Yang, D., Yuan, W.: John–Nirenberg–Campanato spaces. Nonlinear Anal. 189, 111584 (2019)

Tao J., Yang D., Yuan W.: Vanishing John–Nirenberg spaces, Adv. Calc. Var. (Revised) (2020)

Tao J., Yang D., Yuan W.: A survey on several spaces of John–Nirenberg-type, Submitted (2020)

Wang, H.: Morrey spaces for Schrödinger operators with certain nonnegative potentials, Littlewood-Paley and Lusin functions on the Heisenberg groups. Banach J. Math. Anal. 14(4), 1532–1557 (2020)

Yuan W., Sickel W., Yang D.: Morrey and Campanato Meet Besov, Lizorkin and Triebel, Lecture Notes in Mathematics 2005, pp. xii+281. Springer, Berlin (2010)