A bridge connecting Lebesgue and Morrey spaces via Riesz norms
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aalto, D., Berkovits, L., Kansanen, O.E., Yue, H.: John–Nirenberg lemmas for a doubling measure. Stud. Math. 204(1), 21–37 (2011)
Adams D.R.: Morrey spaces. Lecture Notes in Applied and Numerical Harmonic Analysis, pp. xv+121. Birkhäuser/Springer, Cham (2015)
Alabalik, A., Almeida, A., Samko, S.: On the invariance of certain vanishing subspaces of Morrey spaces with respect to some classical operators. Banach J. Math. Anal. 14(3), 987–1000 (2020)
Berkovits, L., Kinnunen, J., Martell, J.M.: Oscillation estimates, self-improving results and good-$$\lambda $$ inequalities. J. Funct. Anal. 270(9), 3559–3590 (2016)
Blasco O., Espinoza-Villalva C.: The norm of the characteristic function of a set in the John–Nirenberg space of exponent $$p$$. Math. Methods Appl. Sci. 43(16), 9327–9336 (2020)
Blasco, O., Ruiz, A., Vega, L.: Non-interpolation in Morrey-Campanato and block spaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 28(1), 31–40 (1999)
Campanato, S.: Proprietà di una famiglia di spazi funzionali. Ann. Scuola Norm. Sup. Pisa (3) 18, 137–160 (1964)
Campanato, S.: Su un teorema di interpolazione di G. Stampacchia. Ann. Scuola Norm. Sup. Pisa (3) 20, 649–652 (1966)
Chiarenza, F., Frasca, M.: Morrey spaces and Hardy–Littlewood maximal function. Rend. Mat. Appl. (7) 7(3–4), 273–279 (1987)
Coifman, R.R., Weiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83(4), 569–645 (1977)
Dafni, G., Hytönen, T., Korte, R., Yue, H.: The space $$JN_p$$: nontriviality and duality. J. Funct. Anal. 275(3), 577–603 (2018)
Di Fazio, G., Ragusa, M.A.: Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients. J. Funct. Anal. 112(2), 241–256 (1993)
Duoandikoetxea J.: Fourier analysis. Graduate Studies in Mathematics, vol. 29, pp. xviii+222. American Mathematical Society, Providence, RI (2001)
Franchi, B., Pérez, C., Wheeden, R.L.: Self-improving properties of John-Nirenberg and Poincaré inequalities on spaces of homogeneous type. J. Funct. Anal. 153(1), 108–146 (1998)
Hakim, D.I.: Complex interpolation of predual spaces of general local Morrey-type spaces. Banach J. Math. Anal. 12(3), 541–571 (2018)
Hakim, D.I., Sawano, Y.: Calderón’s first and second complex interpolations of closed subspaces of Morrey spaces. J. Fourier Anal. Appl. 23(5), 1195–1226 (2017)
Hurri-Syrjänen, R., Marola, N., Vähäkangas, A.V.: Aspects of local-to-global results. Bull. Lond. Math. Soc. 46(5), 1032–1042 (2014)
John, F., Nirenberg, L.: On functions of bounded mean oscillation. Comm. Pure Appl. Math. 14, 415–426 (1961)
Kato, T.: Strong solutions of the Navier–Stokes equation in Morrey spaces. Bol. Soc. Brasil. Mat. (N. S.) 22(2), 127–155 (1992)
Liang, Y., Yang, D.: Musielak-Orlicz Campanato spaces and applications. J. Math. Anal. Appl. 406(1), 307–322 (2013)
Liang, Y., Nakai, E., Yang, D., Zhang, J.: Boundedness of intrinsic Littlewood-Paley functions on Musielak-Orlicz Morrey and Campanato spaces. Banach J. Math. Anal. 8(1), 221–268 (2014)
MacManus, P., Pérez, C.: Generalized Poincaré inequalities: sharp self-improving properties. Int. Math. Res. Notices 1998(2), 101–116 (1998)
Marola, N., Saari, O.: Local to global results for spaces of BMO type. Math. Z. 282(1–2), 473–484 (2016)
Mastyło, M., Sawano, Y.: Complex interpolation and Calderón-Mityagin couples of Morrey spaces. Anal. PDE 12(7), 1711–1740 (2019)
Mastyło, M., Sawano, Y., Tanaka, H.: Morrey-type space and its Köthe dual space. Bull. Malays. Math. Sci. Soc. 41(3), 1181–1198 (2018)
Milman, M.: Marcinkiewicz spaces, Garsia–Rodemich spaces and the scale of John–Nirenberg self improving inequalities. Ann. Acad. Sci. Fenn. Math. 41(1), 491–501 (2016)
Morrey Jr., C.B.: On the solutions of quasi-linear elliptic partial differential equations. Trans. Am. Math. Soc. 43(1), 126–166 (1938)
Nakai, E.: The Campanato, Morrey and Hölder spaces on spaces of homogeneous type. Stud. Math. 176(1), 1–19 (2006)
Nakai, E.: Singular and fractional integral operators on preduals of Campanato spaces with variable growth condition. Sci. China Math. 60(11), 2219–2240 (2017)
Nakai, E., Sawano, Y.: Hardy spaces with variable exponents and generalized Campanato spaces. J. Funct. Anal. 262(9), 3665–3748 (2012)
Nakamura, S., Sawano, Y.: New function spaces related to Morrey spaces and the Fourier transform. Banach J. Math. Anal. 12(1), 1–30 (2018)
Riesz, F.: Untersuchungen über systeme integrierbarer funktionen, (German). Math. Ann. 69(4), 449–497 (1910)
Sawano, Y., Di Fazio, G., Hakim, D.: Morrey Spaces: Introduction and Applications to Integral Operators and PDE’s. Volumes I & II. Chapman and Hall/CRC, New York (2020)
Shen, Z.: Boundary value problems in Morrey spaces for elliptic systems on Lipschitz domains. Am. J. Math. 125(5), 1079–1115 (2003)
Wang, H.: Morrey spaces for Schrödinger operators with certain nonnegative potentials, Littlewood-Paley and Lusin functions on the Heisenberg groups. Banach J. Math. Anal. 14(4), 1532–1557 (2020)