A “blanking effect” for surface features: Transsaccadic spatial-frequency discrimination is improved by postsaccadic blanking
Tóm tắt
Although saccadic eye movements occur frequently—about three or four times a second— humans are astonishingly blind to transsaccadic changes. Locational displacements of the saccade target of up to 2 deg of visual angle, and even large changes of a visual scene, can go unnoticed. For a long time, this insensitivity was ascribed to deficits in transsaccadic memory: Only a coarse, (spatially) imprecise representation would be retained across a saccade. This assumption was contradicted by Deubel’s and Schneider’s (Behavioral and Brain Sciences 17:259–260, 1994) striking finding that locational discrimination performance across a saccade is greatly improved by inserting a short postsaccadic blank. Surprisingly, the question of whether blanking effects occur also for other forms of transsaccadic changes (i.e., surface-feature changes) has been widely ignored. We tested this question by means of a transsaccadic change in spatial frequency. Postsaccadic blanking facilitated spatial-frequency discrimination, but to a smaller amount than the usual blanking effects obtained with locational displacements. This finding bears important implications for models of visual stability and transsaccadic memory.
Tài liệu tham khảo
Abrams, J., Barbot, A., & Carrasco, M. (2010). Voluntary attention increases perceived spatial frequency. Attention, Perception, & Psychophysics, 72, 1510–1521. doi:10.3758/APP.72.6.1510
Afraz, A., & Cavanagh, P. (2009). The gender-specific face aftereffect is based in retinotopic not spatiotopic coordinates across several natural image transformations. Journal of Vision, 10(10), 1–17. doi:10.1167/9.10.10
Bridgeman, B., Hendry, D., & Stark, L. (1975). Failure to detect displacement of the visual world during saccadic eye movements. Vision Research, 15, 719–722.
Cavanagh, P., Hunt, A. R., Afraz, A., & Rolfs, M. (2010). Visual stability based on remapping of attention pointers. Trends in Cognitive Sciences, 14, 147–153. doi:10.1016/j.tics.2010.01.007
Demeyer, M., De Graef, P., Wagemans, J., & Verfaillie, K. (2010). Object form discontinuity facilitates displacement discrimination across saccades. Journal of Vision, 10(6), 17. doi:10.1167/10.6.17. 1–14.
Deubel, H., Bridgeman, B., & Schneider, W. X. (1998). Immediate postsaccadic information mediates space constancy. Vision Research, 5, 3147–3159.
Deubel, H., Bridgeman, B., & Schneider, W. X. (2004). Different effects of eyelid blinks and target blanking on saccadic suppression of displacement. Perception & Psychophysics, 66, 772–778. doi:10.3758/BF03194971
Deubel, H., & Schneider, W. X. (1994). Perceptual stability and postsaccadic visual information: Can man bridge a gap? Behavioral and Brain Sciences, 17, 259–260. doi:10.1017/S0140525X00034397
Deubel, H., Schneider, W. X., & Bridgeman. (1996). Postsaccadic target blanking prevents saccadic suppression of image displacement. Vision Research, 36, 985–996.
Deubel, H., Schneider, W. X., & Bridgeman, B. (2002). Transsaccadic memory of position and form. Progress in Brain Research, 140, 165–180. doi:10.1016/S0079-6123(02)40049-0
Duhamel, J. R., Colby, C. L., & Goldberg, M. E. (1992). The updating of the representation of visual space in parietal cortex by intended eye movements. Science, 255, 90–92. doi:10.1126/science.1553535
Gobell, J., & Carrasco, M. (2005). Attention alters the appearance of spatial frequency and gap size. Psychological Science, 16, 644–651.
Grimes, J. (1996). On the failure to detect changes in scenes across saccades. In K. Akins (Ed.), Perception (Vancouver Studies in Cognitive Science, Vol. 5 (pp. 89–110). Oxford, UK: Oxford University Press.
Henderson, J. M. (1997). Transsaccadic memory and integration during real-world object perception. Psychological Science, 8, 51–55.
Henderson, J. M. (2008). Eye movements and scene memory. In S. J. Luck & A. Hollingworth (Eds.), Visual memory (pp. 87–121). Oxford, UK: Oxford University Press.
Henderson, J. M., & Hollingworth, A. (2003). Global transsaccadic change blindness during scene perception. Psychological Science, 14, 493–497. doi:10.1111/1467-9280.02459
Herwig, A., & Schneider, W. X. (2014). Predicting object features across saccades: Evidence from object recognition and visual search. Journal of Experimental Psychology: General, 143, 1903–1922.
Higgins, E., & Rayner, K. (2015). Transsaccadic processing: Stability, integration, and the potential role of remapping. Attention, Perception, & Psychophysics, 77, 3–27. doi:10.3758/s13414-014-0751-y
Kahneman, D., Treisman, A., & Gibbs, B. J. (1992). The reviewing of object files: Object-specific integration of information. Cognitive Psychology, 24, 175–219. doi:10.1016/0010-0285(92)90007-O
Knapen, T., Rolfs, M., Wexler, M., & Cavanagh, P. (2010). The reference frame of the tilt aftereffect. Journal of Vision, 10(1), 8–1–13. doi:10.1167/10.1.8
Mathôt, S., & Theeuwes, J. (2013). A reinvestigation of the reference frame of the tilt-adaptation aftereffect. Scientific Reports, 3(1152), 1–6. doi:10.1038/srep01152
Melcher, D. (2005). Spatiotopic transfer of visual-form adaptation across saccadic eye movements. Current Biology, 15, 1745–1748. doi:10.1016/j.cub.2005.08.044
Melcher, D. (2007). Predictive remapping of visual features precedes saccadic eye movements. Nature Neuroscience, 10, 903–907. doi:10.1038/nn1917
Melcher, D., & Colby, C. L. (2008). Trans-saccadic perception. Trends in Cognitive Sciences, 12, 466–473. doi:10.1016/j.tics.2008.09.003
O’Regan, J. K. (1992). Solving the “real” mysteries of visual perception: The world as an outside memory. Canadian Journal of Psychology, 46, 461–488.
O’Regan, J. K., & Noë, A. (2001). A sensorimotor account of vision and visual consciousness. Behavioral and Brain Sciences, 24, 939–973. doi:10.1017/S0140525X01000115. disc. 973–1031.
Prins, N., & Kingdom, F. A. A. (2009). Palamedes: Matlab routines for analyzing psychophysical data [Software]. Retrieved from www.palamedestoolbox.org
Rolfs, M., Jonikaitis, D., Deubel, H., & Cavanagh, P. (2011). Predictive remapping of attention across eye movements. Nature Neuroscience, 14, 252–256. doi:10.1038/nn.2711
Schneider, W. X. (2013). Selective visual processing across competition episodes: A theory of task-driven visual attention and working memory. Philosophical Transactions of the Royal Society B, 368, 20130060. doi:10.1098/rstb.2013.0060. 1–13.
Schneider, W. X., & Deubel, H. (1996). Transsaccadic memory: A postsaccadic gap enhances the perception of intrasaccadic object changes differently for dorsal and ventral representations [Abstract]. Perception, 25(5, ECVP Abstract Supplement)
Tas, A. C., Moore, C. M., & Hollingworth, A. (2012). An object-mediated updating account of insensitivity to transsaccadic change. Journal of Vision, 12(11), 18. doi:10.1167/12.11.18. 1–13.
Weiß, K., Schneider, W. X., & Herwig, A. (2014). Associating peripheral and foveal visual input across saccades: A default mode of the human visual system. Journal of Vision, 14(11), 7. doi:10.1167/14.11.7. 1–15.
Wexler, M., & Collins, T. (2014). Orthogonal steps relieve saccadic suppression. Journal of Vision, 14(2), 13. doi:10.1167/14.2.13. 1–9.
Wurtz, R. H., Joiner, W. M., & Berman, R. A. (2011). Neuronal mechanisms for visual stability: Progress and problems. Philosophical Transactions of the Royal Society B, 366, 492–503. doi:10.1098/rstb.2010.0186
Zirnsak, M., Steinmetz, M. A., Noudoost, B., Xu, K. Z., & Moore, T. (2014). Visual space is compressed in prefrontal cortex before eye movements. Nature, 507, 504–507.