A “blanking effect” for surface features: Transsaccadic spatial-frequency discrimination is improved by postsaccadic blanking

Attention, Perception, & Psychophysics - Tập 77 - Trang 1500-1506 - 2015
Katharina Weiß1, Werner X. Schneider2,1, Arvid Herwig2,1
1Cluster of Excellence Cognitive Interaction Technology, Bielefeld University, Bielefeld, Germany
2Department of Psychology, Bielefeld University, Bielefeld, Germany

Tóm tắt

Although saccadic eye movements occur frequently—about three or four times a second— humans are astonishingly blind to transsaccadic changes. Locational displacements of the saccade target of up to 2 deg of visual angle, and even large changes of a visual scene, can go unnoticed. For a long time, this insensitivity was ascribed to deficits in transsaccadic memory: Only a coarse, (spatially) imprecise representation would be retained across a saccade. This assumption was contradicted by Deubel’s and Schneider’s (Behavioral and Brain Sciences 17:259–260, 1994) striking finding that locational discrimination performance across a saccade is greatly improved by inserting a short postsaccadic blank. Surprisingly, the question of whether blanking effects occur also for other forms of transsaccadic changes (i.e., surface-feature changes) has been widely ignored. We tested this question by means of a transsaccadic change in spatial frequency. Postsaccadic blanking facilitated spatial-frequency discrimination, but to a smaller amount than the usual blanking effects obtained with locational displacements. This finding bears important implications for models of visual stability and transsaccadic memory.

Tài liệu tham khảo

Abrams, J., Barbot, A., & Carrasco, M. (2010). Voluntary attention increases perceived spatial frequency. Attention, Perception, & Psychophysics, 72, 1510–1521. doi:10.3758/APP.72.6.1510 Afraz, A., & Cavanagh, P. (2009). The gender-specific face aftereffect is based in retinotopic not spatiotopic coordinates across several natural image transformations. Journal of Vision, 10(10), 1–17. doi:10.1167/9.10.10 Bridgeman, B., Hendry, D., & Stark, L. (1975). Failure to detect displacement of the visual world during saccadic eye movements. Vision Research, 15, 719–722. Cavanagh, P., Hunt, A. R., Afraz, A., & Rolfs, M. (2010). Visual stability based on remapping of attention pointers. Trends in Cognitive Sciences, 14, 147–153. doi:10.1016/j.tics.2010.01.007 Demeyer, M., De Graef, P., Wagemans, J., & Verfaillie, K. (2010). Object form discontinuity facilitates displacement discrimination across saccades. Journal of Vision, 10(6), 17. doi:10.1167/10.6.17. 1–14. Deubel, H., Bridgeman, B., & Schneider, W. X. (1998). Immediate postsaccadic information mediates space constancy. Vision Research, 5, 3147–3159. Deubel, H., Bridgeman, B., & Schneider, W. X. (2004). Different effects of eyelid blinks and target blanking on saccadic suppression of displacement. Perception & Psychophysics, 66, 772–778. doi:10.3758/BF03194971 Deubel, H., & Schneider, W. X. (1994). Perceptual stability and postsaccadic visual information: Can man bridge a gap? Behavioral and Brain Sciences, 17, 259–260. doi:10.1017/S0140525X00034397 Deubel, H., Schneider, W. X., & Bridgeman. (1996). Postsaccadic target blanking prevents saccadic suppression of image displacement. Vision Research, 36, 985–996. Deubel, H., Schneider, W. X., & Bridgeman, B. (2002). Transsaccadic memory of position and form. Progress in Brain Research, 140, 165–180. doi:10.1016/S0079-6123(02)40049-0 Duhamel, J. R., Colby, C. L., & Goldberg, M. E. (1992). The updating of the representation of visual space in parietal cortex by intended eye movements. Science, 255, 90–92. doi:10.1126/science.1553535 Gobell, J., & Carrasco, M. (2005). Attention alters the appearance of spatial frequency and gap size. Psychological Science, 16, 644–651. Grimes, J. (1996). On the failure to detect changes in scenes across saccades. In K. Akins (Ed.), Perception (Vancouver Studies in Cognitive Science, Vol. 5 (pp. 89–110). Oxford, UK: Oxford University Press. Henderson, J. M. (1997). Transsaccadic memory and integration during real-world object perception. Psychological Science, 8, 51–55. Henderson, J. M. (2008). Eye movements and scene memory. In S. J. Luck & A. Hollingworth (Eds.), Visual memory (pp. 87–121). Oxford, UK: Oxford University Press. Henderson, J. M., & Hollingworth, A. (2003). Global transsaccadic change blindness during scene perception. Psychological Science, 14, 493–497. doi:10.1111/1467-9280.02459 Herwig, A., & Schneider, W. X. (2014). Predicting object features across saccades: Evidence from object recognition and visual search. Journal of Experimental Psychology: General, 143, 1903–1922. Higgins, E., & Rayner, K. (2015). Transsaccadic processing: Stability, integration, and the potential role of remapping. Attention, Perception, & Psychophysics, 77, 3–27. doi:10.3758/s13414-014-0751-y Kahneman, D., Treisman, A., & Gibbs, B. J. (1992). The reviewing of object files: Object-specific integration of information. Cognitive Psychology, 24, 175–219. doi:10.1016/0010-0285(92)90007-O Knapen, T., Rolfs, M., Wexler, M., & Cavanagh, P. (2010). The reference frame of the tilt aftereffect. Journal of Vision, 10(1), 8–1–13. doi:10.1167/10.1.8 Mathôt, S., & Theeuwes, J. (2013). A reinvestigation of the reference frame of the tilt-adaptation aftereffect. Scientific Reports, 3(1152), 1–6. doi:10.1038/srep01152 Melcher, D. (2005). Spatiotopic transfer of visual-form adaptation across saccadic eye movements. Current Biology, 15, 1745–1748. doi:10.1016/j.cub.2005.08.044 Melcher, D. (2007). Predictive remapping of visual features precedes saccadic eye movements. Nature Neuroscience, 10, 903–907. doi:10.1038/nn1917 Melcher, D., & Colby, C. L. (2008). Trans-saccadic perception. Trends in Cognitive Sciences, 12, 466–473. doi:10.1016/j.tics.2008.09.003 O’Regan, J. K. (1992). Solving the “real” mysteries of visual perception: The world as an outside memory. Canadian Journal of Psychology, 46, 461–488. O’Regan, J. K., & Noë, A. (2001). A sensorimotor account of vision and visual consciousness. Behavioral and Brain Sciences, 24, 939–973. doi:10.1017/S0140525X01000115. disc. 973–1031. Prins, N., & Kingdom, F. A. A. (2009). Palamedes: Matlab routines for analyzing psychophysical data [Software]. Retrieved from www.palamedestoolbox.org Rolfs, M., Jonikaitis, D., Deubel, H., & Cavanagh, P. (2011). Predictive remapping of attention across eye movements. Nature Neuroscience, 14, 252–256. doi:10.1038/nn.2711 Schneider, W. X. (2013). Selective visual processing across competition episodes: A theory of task-driven visual attention and working memory. Philosophical Transactions of the Royal Society B, 368, 20130060. doi:10.1098/rstb.2013.0060. 1–13. Schneider, W. X., & Deubel, H. (1996). Transsaccadic memory: A postsaccadic gap enhances the perception of intrasaccadic object changes differently for dorsal and ventral representations [Abstract]. Perception, 25(5, ECVP Abstract Supplement) Tas, A. C., Moore, C. M., & Hollingworth, A. (2012). An object-mediated updating account of insensitivity to transsaccadic change. Journal of Vision, 12(11), 18. doi:10.1167/12.11.18. 1–13. Weiß, K., Schneider, W. X., & Herwig, A. (2014). Associating peripheral and foveal visual input across saccades: A default mode of the human visual system. Journal of Vision, 14(11), 7. doi:10.1167/14.11.7. 1–15. Wexler, M., & Collins, T. (2014). Orthogonal steps relieve saccadic suppression. Journal of Vision, 14(2), 13. doi:10.1167/14.2.13. 1–9. Wurtz, R. H., Joiner, W. M., & Berman, R. A. (2011). Neuronal mechanisms for visual stability: Progress and problems. Philosophical Transactions of the Royal Society B, 366, 492–503. doi:10.1098/rstb.2010.0186 Zirnsak, M., Steinmetz, M. A., Noudoost, B., Xu, K. Z., & Moore, T. (2014). Visual space is compressed in prefrontal cortex before eye movements. Nature, 507, 504–507.