A biomimetic approach to conjugate vitamin B6 cofactor with the lysozyme cocooned fluorescent AuNCs and its application in turn-on sensing of zinc(II) in environmental and biological samples
Tóm tắt
Từ khóa
Tài liệu tham khảo
Lippard SJ, Berg JM. Principles of bioinorganic chemistry. South Orange: University Science Books; 1994.
Prasad AS. Zinc: role in immunity, oxidative stress and chronic inflammation. Current Opinion in Clinical Nutrition & Metabolic Care. 2009;12(6):646–52.
Shankar AH, Prasad AS. Zinc and immune function: the biological basis of altered resistance to infection. Am J Clin Nutr. 1998;68(2):447S–63S.
Pastorekova S, Parkkila S, Pastorek J, Supuran CT. Review article. Journal of Enzyme Inhibition and Medicinal Chemistry. 2004;19(3):199–229.
Reid MF, Fewson CA. Molecular characterization of microbial alcohol dehydrogenases. Crit Rev Microbiol. 1994;20(1):13–56.
Sandstead HH. Understanding zinc: recent observations and interpretations. J Lab Clin Med. 1994;124(3):322–7.
Ghosh SK, Kim P, X-a Z, Yun S-H, Moore A, Lippard SJ, et al. A novel imaging approach for early detection of prostate cancer based on endogenous zinc sensing. Cancer Res. 2010;70(15):6119–27.
Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature. 2007;445(7130):881–5.
Morrison S, Russell R, Carney E, Oaks E. Zinc deficiency: a cause of abnormal dark adaptation in cirrhotics. Am J Clin Nutr. 1978;31(2):276–81.
Dean KM, Qin Y, Palmer AE. Visualizing metal ions in cells: an overview of analytical techniques, approaches, and probes. Biochimica et Biophysica Acta (BBA)-molecular. Cell Res. 2012;1823(9):1406–15.
Pluth MD, Tomat E, Lippard SJ. Biochemistry of mobile zinc and nitric oxide revealed by fluorescent sensors. Annu Rev Biochem. 2011;80:333–55.
Duan X, Sun R, Fang J. On-line continuous generation of zinc chelates in the vapor phase by reaction with sodium dithiocarbamates and determination by atomic fluorescence spectrometry. Spectrochim Acta B At Spectrosc. 2017;128:11–6.
Binet MR, Ma R, McLeod CW, Poole RK. Detection and characterization of zinc-and cadmium-binding proteins in Escherichia Coli by gel electrophoresis and laser ablation-inductively coupled plasma-mass spectrometry. Anal Biochem. 2003;318(1):30–8.
Dueraning A, Kanatharana P, Thavarungkul P, Limbut W. An environmental friendly electrode and extended cathodic potential window for anodic stripping voltammetry of zinc detection. Electrochim Acta. 2016;221:133–43.
Tsien RY. Fluorescent and photochemical probes of dynamic biochemical signals inside living cells. Fluorescent Chemosensors for Ion and Molecule Recognition. 1993;538:130–46.
Loo AH, Sofer Z, Bouša D, Ulbrich P, Bonanni A, Pumera M. Carboxylic carbon quantum dots as a fluorescent sensing platform for DNA detection. ACS Appl Mater Interfaces. 2016;8(3):1951–7.
Fan Z, Sun L, Huang Y, Wang Y, Zhang M. Bioinspired fluorescent dipeptide nanoparticles for targeted cancer cell imaging and real-time monitoring of drug release. Nat Nanotechnol. 2016;11(4):388–94.
Zhang X, Lin H, Huang H, Reckmeier C, Zhang Y, Choy WC, et al. Enhancing the brightness of cesium lead halide perovskite nanocrystal based green light-emitting devices through the interface engineering with perfluorinated ionomer. Nano Lett. 2016;16(2):1415–20.
Wang C, Xu L, Wang Y, Zhang D, Shi X, Dong F, et al. Fluorescent silver nanoclusters as effective probes for highly selective detection of mercury (II) at parts-per-billion levels. Chemistry–an Asian. Journal. 2012;7(7):1652–6.
Chen W-Y, Lan G-Y, Chang H-T. Use of fluorescent DNA-templated gold/silver nanoclusters for the detection of sulfide ions. Anal Chem. 2011;83(24):9450–5.
Huang Z, Pu F, Lin Y, Ren J, Qu X. Modulating DNA-templated silver nanoclusters for fluorescence turn-on detection of thiol compounds. Chem Commun. 2011;47(12):3487–9.
Wang M, Mei Q, Zhang K, Zhang Z. Protein-gold nanoclusters for identification of amino acids by metal ions modulated ratiometric fluorescence. Analyst. 2012;137(7):1618–23.
Liu J, Lu L, Xu S, Wang L. One-pot synthesis of gold nanoclusters with bright red fluorescence and good biorecognition abilities for visualization fluorescence enhancement detection of E. Coli. Talanta. 2015;134:54–9.
Shang L, Dong S, Nienhaus GU. Ultra-small fluorescent metal nanoclusters: synthesis and biological applications. Nano Today. 2011;6(4):401–18.
Zhang J, Chen C, Xu X, Wang X, Yang X. Use of fluorescent gold nanoclusters for the construction of a NAND logic gate for nitrite. Chem Commun. 2013;49(26):2691–3.
Xie J, Zheng Y, Ying JY. Protein-directed synthesis of highly fluorescent gold Nanoclusters. J Am Chem Soc. 2009;131(3):888–9.
Wen Q, Gu Y, Tang L-J, R-Q Y, Jiang J-H. Peptide-templated gold nanocluster beacon as a sensitive, label-free sensor for protein post-translational modification enzymes. Anal Chem. 2013;85(24):11681–5.
Wang Y, Wang Y, Zhou F, Kim P, Xia Y. Protein-protected au clusters as a new class of nanoscale biosensor for label-free fluorescence detection of proteases. Small. 2012;8(24):3769–73.
Chan P-H, Chen Y-C. Human serum albumin stabilized gold nanoclusters as selective luminescent probes for Staphylococcus aureus and methicillin-resistant Staphylococcus aureus. Anal Chem. 2012;84(21):8952–6.
Liu C-L, H-T W, Hsiao Y-H, Lai C-W, Shih C-W, Peng Y-K, et al. Insulin-directed synthesis of fluorescent gold nanoclusters: preservation of insulin bioactivity and versatility in cell imaging. Angew Chem Int Ed. 2011;50(31):7056–60.
Wen F, Dong Y, Feng L, Wang S, Zhang S, Zhang X. Horseradish peroxidase functionalized fluorescent gold nanoclusters for hydrogen peroxide sensing. Anal Chem. 2011;83(4):1193–6.
Kawasaki H, Hamaguchi K, Osaka I, Arakawa R. Ph-dependent synthesis of pepsin-mediated gold nanoclusters with blue green and red fluorescent emission. Adv Funct Mater. 2011;21(18):3508–15.
Xavier PL, Chaudhari K, Verma PK, Pal SK, Pradeep T. Luminescent quantum clusters of gold in transferrin family protein, lactoferrin exhibiting FRET. Nano. 2010;2(12):2769–76.
Wei H, Wang Z, Yang L, Tian S, Hou C, Lu Y. Lysozyme-stabilized gold fluorescent cluster: synthesis and application as Hg2+ sensor. Analyst. 2010;135(6):1406–10.
Das J, Kelley SO. Tuning the bacterial detection sensitivity of nanostructured microelectrodes. Anal Chem. 2013;85(15):7333–8.
Li C, Chen H, Chen B, Zhao G (2016) Highly fluorescent gold nanoclusters stabilized by food proteins: From preparation to application in detection of food contaminants and bioactive nutrients. Critical Reviews in Food Science and Nutrition:00–00.
Awade AC. On hen egg fractionation: applications of liquid chromatography to the isolation and the purification of hen egg white and egg yolk proteins. Zeitschrift für Lebensmittel-Untersuchung und. Forschung. 1996;202(1):1–14.
Grütter M, Weaver L, Matthews B. Goose lysozyme structure: an evolutionary link between hen and bacteriophage lysozymes? Nature. 1983;303(5920):828–31.
Lin Y-H, Tseng W-L. Ultrasensitive sensing of Hg2+ and CH3Hg+ based on the fluorescence quenching of lysozyme type VI-stabilized gold nanoclusters. Anal Chem. 2010;82(22):9194–200.
Lu D, Liu L, Li F, Shuang S, Li Y, Choi MMF, et al. Lysozyme-stabilized gold nanoclusters as a novel fluorescence probe for cyanide recognition. Spectrochim Acta A Mol Biomol Spectrosc. 2014;121:77–80.
Sharma D, Kuba A, Thomas R, Kumar R, Choi H-J, Sahoo SK. An aqueous friendly chemosensor derived from vitamin B6 cofactor for colorimetric sensing of Cu2+ and fluorescent turn-off sensing of Fe3+. Spectrochim Acta A Mol Biomol Spectrosc. 2016;153:393–6.
Mudedla S, Singam EA, Vijay Sundar J, Pedersen MN, Murugan NA, Kongsted J, et al. Enhancement of internal motions of lysozyme through interaction with gold nanoclusters and its optical imaging. J Phys Chem C. 2014;119(1):653–64.
Yam VWW, Cheng ECC, Cheung KK. A novel high-nuclearity luminescent gold (I)–Sulfido complex. Angew Chem Int Ed. 1999;38(1–2):197–9.
Peng W, Ding F, Peng Y-K, Jiang Y-T, Zhang L. Binding patterns and structure–affinity relationships of food Azo dyes with lysozyme: a multitechnique approach. J Agric Food Chem. 2013;61(50):12415–28.
Barth A. Infrared spectroscopy of proteins. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 2007;1767(9):1073–101.
Ju-Nam Y, Chen Y-S, Ojeda JJ, Allen DW, Cross NA, Gardiner PH, et al. Water-soluble gold nanoparticles stabilized with cationic phosphonium thiolate ligands. RSC Adv. 2012;2(27):10345–51.
Dementjev A, De Graaf A, Van de Sanden M, Maslakov K, Naumkin A, Serov A. X-ray photoelectron spectroscopy reference data for identification of the C3N4 phase in carbon–nitrogen films. Diam Relat Mater. 2000;9(11):1904–7.
Song Y, Liu G, Yuan Z-Y. N-, P- and B-doped mesoporous carbons for direct dehydrogenation of propane. RSC Adv. 2016;6(97):94636–42.
Ravishankar T, Manjunatha K, Ramakrishnappa T, Nagaraju G, Kumar D, Sarakar S, et al. Comparison of the photocatalytic degradation of trypan blue by undoped and silver-doped zinc oxide nanoparticles. Mater Sci Semicond Process. 2014;26:7–17.