A biologically-inspired embedded monitoring network system for moving target detection in panoramic view
Tóm tắt
An embedded monitoring network system is based on the visual principle of compound eye, which meets the acquirements in field angle, detecting efficiency, and structural complexity of panoramic monitoring network. Three fixed wide-angle cameras are adopted as sub-eyes, and a main camera is installed on a high-speed platform. The system ensures the continuity of tracking with high sensitivity and accuracy in a field of view (FOV) of 360 × 180°. In the non-overlapping FOV of the sub-eyes, we adopt Gaussian background difference model and morphological algorithm to detect moving targets. However, in the overlapping FOV, we use the strategy of lateral inhibition network which improves the continuity of detection and speed of response. The experimental results show that our system locates a target within 0.15 s after it starts moving in the non-overlapping field; when a target moves in the overlapping field, it takes 0.23 s to locate it. The system reduces the cost and complexity in traditional panoramic monitoring network and lessens the labor intensity in the field of monitoring.
Tài liệu tham khảo
Black J, Ellis TJ, Makris D: Wide area surveillance with a multi camera network. In Proceedings of the Intelligent Distributed Surveillance Systems. London; 2004:21-25.
Huang F, Shen X, Wang Q, Zhou B, Hu W, Shen H, Li L: Correction method for fisheye image based on the virtual small-field camera. Opt. Lett. 2013, 38(9):1392-1394. 10.1364/OL.38.001392
Liang Q: Biologically-inspired target recognition in radar sensor networks. EURASIP J. Wirel. Commun. Netw. 2010, 2010: 523435.
Liang Q, Cheng X, Samn S: NEW: network-enabled electronic warfare for target recognition. IEEE T. Aero. Elec. Sys. 2010, 46(2):558-568.
Liang Q: Automatic target recognition using waveform diversity in radar sensor networks. Pattern Recognit. Lett. 2008, 29(2):377-381.
Liang Q, Cheng X: KUPS: knowledge-based ubiquitous and persistent sensor networks for threat assessment. IEEE Trans. Aerosp. Electron. Syst. 2008, 44(3):1060-1069.
Liang Q: Waveform design and diversity in radar sensor networks: theoretical analysis and application to automatic target recognition. In Third Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks. Volume 2. Reston; 2006:684-689.
Liang Q: Situation understanding based on heterogeneous sensor networks and human-inspired favor weak fuzzy logic system. IEEE Syst. J. 2011, 5(2):156-163.
Liang Q: Radar sensor networks: algorithms for waveform design and diversity with application to ATR with delay-Doppler uncertainty. EURASIP J. Wirel. Commun. Netw. 2007, 2007: 89103. 10.1155/2007/89103
Zhong Z, Liang Q, Wang L: Biologically-inspired energy efficient distributed acoustic sensor networks. Ad Hoc & Sensor Wireless Networks 2011, 13(1–2):1-12.
Horisaki R, Irie S, Ogura Y, Tanida J: Three-dimensional information acquisition using a compound imaging system. Opt. Rev. 2007, 14(5):347-350. 10.1007/s10043-007-0347-z
Duparré JW, Wippermann FC: Micro-optical artificial compound eyes. Bioinspir. Biomim. 2006, 1(1):R1-16. 10.1088/1748-3182/1/1/R01
Krishnasamy R, Wong W, Shen E, Pepic S, Hornsey R, Thomas PJ: High precision target tracking with a compound-eye image sensor. Can. Con. El. Comp. En. 2004, 4: 2319-2323.
Strausfeld NJ, Campos-Ortega JA: Vision in insects: pathways possibly underlying neural adaptation and lateral inhibition. Science 1977, 195(4281):894-897. 10.1126/science.841315
Yu X, Liu J, Sheng Q: The application for underwater special monitoring equipment based on the PELCO-D protocol. Appl. Mech. Mater. 2012, 217–219: 2550-2554.
Tai J, Tseng S, Lin C, Song K: Real-time image tracking for automatic traffic monitoring and enforcement applications. Image Vision Comput. 2004, 22: 485-501. 10.1016/j.imavis.2003.12.001
Liang R, Yan L, Gao P, Qian X, Zhang Z, Sun H: Aviation video moving-target detection with inter-frame difference. 3rd International Congress on Image and Signal Processing (CISP) 2010, 3: 1494-1497.
Yan R, Song X, Yan S: Moving object detection based on an improved Gaussian mixture background model. In ISECS International Colloquium on Computing, Communication, Control, and Management. Volume 1. Sanya; 2009:12-15.
Al-amri SS, Kalyankar NV, Khamitkar SD: Image segmentation by using threshold techniques. J. Comput. 2010, 2(5):83-86.
Soille P, Vogt P: Morphological segmentation of binary patterns. Pattern Recognit. Lett. 2009, 30(4):456-459. 10.1016/j.patrec.2008.10.015
Gao K, Dong M, Li D, Cheng W: An algorithm of extracting infrared image edge based on lateral inhibition network and wavelet phase filtration. In 9th International Conference on Electronic Measurement & Instruments (ICEMI '09). Beijing; 2009:303-307.
Bansal B, Saini JS, Bansal V, Kaur G: Comparison of various edge detection techniques. J. inform. Oper. Manag. 2012, 3(1):103-106.