Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Nghiên cứu sinh hóa và hình thái học với mô hình hồi quy tuyến tính đa biến - Dự đoán tác động của chất ô nhiễm không khí lên một số loài cây bản địa tại thành phố Haldwani, vùng Kumaun Himalaya, Uttarakhand, Ấn Độ
Tóm tắt
Nghiên cứu hiện tại được thực hiện tại tỉnh Haldwani, Uttarakhand, Ấn Độ, nhằm hiểu sự biến động theo mùa của các chất ô nhiễm không khí (PM2.5, PM10, SO2 và NO2) và tác động của chúng đến bốn loài cây, cụ thể là neem (Azadirachta indica), tùng núi (Toona ciliate), cọ chai (Callistemon citrinus), và ổi (Psidium guajava) trong giai đoạn 2020–2021. Phân tích dự đoán dựa trên hồi quy tuyến tính đa biến (MLR) cho thấy các biến chất lượng không khí được chọn (PM2.5, PM10, SO2 và NO2) có tác động đáng kể đến các phản ứng sinh hóa của các loài cây đã chọn, bao gồm pH, acid ascorbic (AA), tổng lượng diệp lục (T. Chl.), độ ẩm tương đối (RWC) và tiềm năng lắng đọng bụi. Trong đó, hệ số biến thiên (R2) của các mô hình phát triển nằm trong khoảng 0.70–0.98. Các chất ô nhiễm không khí thể hiện sự biến động theo mùa rõ rệt được thể hiện qua chỉ số chịu đựng ô nhiễm không khí (APTI) và chỉ số hiệu suất dự kiến (API). Các loài cây từ các khu vực bị ô nhiễm cho thấy khả năng chống chịu ô nhiễm cao hơn so với các loài cây từ khu vực đối chứng. Phân tích hồi quy cho thấy có mối liên hệ dương đáng kể giữa các đặc điểm sinh hóa và APTI, với ảnh hưởng cao nhất do AA (R2 = 0.961) tiếp theo là T. Chl., RWC và pH. Điểm số APTI và API được ghi nhận cao nhất cho A. indica và thấp nhất cho C. citrinus. Tác động của các chất ô nhiễm không khí lên hình thái bề mặt lá được nghiên cứu bằng kính hiển vi điện tử quét (SEM) và ghi nhận các mẫu lắng đọng bụi khác nhau, sự tắc nghẽn khí khổng và tổn thương tế bào bảo vệ ở các cây trồng dọc theo khu vực bị ô nhiễm (S2). Nghiên cứu hiện tại có thể giúp các nhà quản lý môi trường xem xét các biến số gây ô nhiễm và phát triển một vành đai xanh hiệu quả để chống lại ô nhiễm không khí ở những khu vực ô nhiễm.
Từ khóa
#ô nhiễm không khí #hồi quy tuyến tính đa biến #APTI #API #cây bản địa #Haldwani #UttarakhandTài liệu tham khảo
Abdullah S, Ismail M, Fong SY (2017) Multiple linear regression (MLR) models for long term PM10 concentration forecasting during different monsoon seasons. J Sustain Sci Manag 12:60–69
Abdullah S, Napi NNLM, Ahmed AN, Mansor WNW, Mansor AA, Ismail M, Abdullah AM, Ramly ZTA (2020) Development of multiple linear regression for particulate matter (PM10) forecasting during episodic transboundary haze event in Malaysia. Atmosphere 11(3):289. https://doi.org/10.3390/atmos11030289
Adhikari S, Jordaan A, Beukes JP, Siebert SJ (2022) Anthropogenic sources dominate foliar chromium dust deposition in a mining-based urban region of South Africa. Int J Environ Res Public Health 19(4):2072. https://doi.org/10.3390/ijerph19042072
AL-Huqail AA, Kumar P, Abou Fayssal S, Adelodun B, Širić I, Goala M, Choi KS, Taher MA, El-Kholy AS, Eid EM (2023) Sustainable use of sewage sludge for marigold (Tageteserecta L.) cultivation: experimental and predictive modeling studies on heavy metal accumulation. Horticulturae 9:447. https://doi.org/10.3390/horticulturae9040447
Alotaibi MD, Alharbi BH, Al-Shamsi MA, Alshahrani TS, Al-Namazi A, Alharbi S, Alotaibi FS, Qian Y (2020) Assessing the response of five tree species to air pollution in Riyadh City, Saudi Arabia, for potential green belt application. Environ Sci Pollut Res 27:29156–29170. https://doi.org/10.1007/s11356-020-09226-w
Anake WU, Bayode FO, Jonathan HO, Omonhinmin CA, Odetunmibi OA, Anake TA (2022) Screening of plant species response and performance for green belt development: implications for semi-urban ecosystem restoration. Sustainability 14(7):3968. https://doi.org/10.3390/su14073968
Anand P, Mina U, Khare M, Kumar P, Kota SH (2022) Air pollution and plant health response-current status and future directions. Atmos Pollut Res 101508. https://doi.org/10.1016/j.apr.2022.101508.
Arnon DI (1949) Copper enzymes in isolated chloroplasts polyphenol oxidase in Beta vulgaris. Plant Physiol 24(1):1–16. https://doi.org/10.1104/pp.24.1.1
Bandara WARTW, Dissanayake CTM (2021) Most tolerant roadside tree species for urban settings in humid tropics based on Air Pollution Tolerance Index. Urban Climate 37:100848. https://doi.org/10.1016/j.uclim.2021.100848
Banerjee S, Banerjee A, Palit D (2022) Morphological and biochemical study of plant species- a quick tool for assessing the impact of air pollution. J Clean Prod 339:130647. https://doi.org/10.1016/j.jclepro.2022.130647
Bharti SK, Trivedi A, Kumar N (2018) Air pollution tolerance index of plants growing near an industrial site. Urban Climate 24:820–829. https://doi.org/10.1016/j.uclim.2017.10.007
Bodor Z, Bodor K, Keresztesi Á, Szép R (2020) Major air pollutants seasonal variation analysis and long-range transport of PM10 in an urban environment with specific climate condition in Transylvania (Romania). Environ Sci Pollut Res 27:38181–38199. https://doi.org/10.1007/s11356-020-09838-2
Central Pollution Control Board (CPCB) (2012) Ministry of environment and forests, Government of India. http://cpcb.nic.in/National_Ambient_Air_Quality_Standards.Php. Accessed 22 June 2022
Chaudhuri S, Kumar A (2022) Urban greenery for air pollution control: a meta-analysis of current practice, progress, and challenges. Environ Monit Assess 194:235. https://doi.org/10.1007/s10661-022-09808-w
Correa-Ochoa M, Mejia-Sepulveda J, Saldarriaga-Molina J, Castro-Jiménez C, Aguiar-Gil D (2022) Evaluation of air pollution tolerance index and anticipated performance index of six plant species, in an urban tropical valley: Medellin, Colombia. Environ Sci Pollut Res 29:7952–7971. https://doi.org/10.1007/s11356-021-16037-0
Deep A, Pandey CP, Nandan H, Purohit KD, Singh N, Singh J, Srivastava AK, Ojha N (2019) Evaluation of ambient air quality in Dehradun city during 2011–2014. J Earth Syst Sci 128:96. https://doi.org/10.1007/s12040-019-1092-y
Diener A, Mudu P (2021) How can vegetation protect us from air pollution? A critical review on green spaces’ mitigation abilities for air-borne particles from a public health perspective-with implications for urban planning. Sci Total Environ 796:148605. https://doi.org/10.1016/j.scitotenv.2021.148605
Duxbury AC, Yentsch CS (1956) Plankton pigment nomographs. J Mar Res 15:91
Enitan IT, Durowoju OS, Edokpayi JN, Odiyo JO (2022) A review of air pollution mitigation approach using air pollution tolerance index (APTI) and anticipated performance index (API). Atmosphere 13:374. https://doi.org/10.3390/atmos13030374
Giri A, Chauhan S, Sharma T, Nadda A, Pant D (2021) Recent advances in enzymatic conversion of carbon dioxide into value-added product. Advances in Carbon Capture and Utilization. 313–26. https://doi.org/10.1007/978-981-16-0638-0_14
Giri A, Pant D (2018) Inhalation dose due to Rn-222, Rn-220 and their progeny in indoor environments. Appl Radiat Isot 132:116–121
Giri A, Pant D (2019) CO2 management using carbonic anhydrase producing microbes from western Indian Himalaya. Bioresour Technol Rep 8:100320
Global Burden of Disease Collaborative Network. Global Burden of Disease Study (2019) Disease and Injury Burden 1990–2019. Seattle, United States of America: Institute for Health Metrics and Evaluation (IHME). https://doi.org/10.6069/P5WM-5A36
Goswami M, Kumar V, Kumar P, Singh N (2022) Prediction models for evaluating the impacts of ambient air pollutants on the biochemical response of selected tree species of Haridwar, India. Environ Monit Assess 194(10):696. https://doi.org/10.1007/s10661-022-10384-2
Govindaraju M, Ganeshkumar RS, Muthukumaran VR, Visvanathan P (2012) Identification and evaluation of air-pollution tolerant plants around lignite-based thermal power station for greenbelt development. Environ Sci Pollut Res 19(4):1210–1223. https://doi.org/10.1007/s11356-011-0637-7
Haque R, Mondal S (2011) Investigation of in Vitro Anthelmintic activity of Azadirachtaindica Leaves. Int J Drug Developm Res 3(4):94–100
He J, Gong S, Yu Y, Yu L, Wu L, Mao H, Song C, Zhao S, Liu H, Li X, Li R (2017) Air pollution characteristics and their relation to meteorological conditions during 2014–2015 in major Chinese cities. Environ Pollut 223:484–496. https://doi.org/10.1016/j.envpol.2017.01.050
Health Effects institute (2019) State of global air 2019: a special report on global exposure to air pollution and its disease burden. https://www.stateofglobalair.org/sites/default/files/soga_2019_report.pdf. Accessed 28 June 2022.
Hozhabralsadat MS, Heidari A, Karimian Z, Farzam M (2022) Assessment of plant species suitability in green walls based on API, heavy metal accumulation, and particulate matter capture capacity. Environ Sci Pollut Res 29(45):68564–68581. https://doi.org/10.1007/s11356-022-20625-z
India Meteorological Department (2020) Observed rainfall variability and changes over Uttarakhand State. Government of India, Ministry of Earth Sciences. https://internal.imd.gov.in/press_release/20200330_pr_778.pdf. Accessed 28 Jul 2022
IQ Air (2020) World Air Quality Report: Region and City PM2.5 Ranking. https://www.iqair.com/in-en/world-air-quality-report. Accesses on 21 Apr 2023
Jacobs MB, Hochheiser S (1958) Continuous sampling and ultramicrodetermination of nitrogen dioxide in air. Anal Chem 30(3):426–428
Javanmard Z, Kouchaksaraei MT, Hosseini SM, Pandey AK (2020) Assessment of anticipated performance index of some deciduous plant species under dust air pollution. Environ Sci Pollut Res 27:38987–38994. https://doi.org/10.1007/s11356-020-09957-w
Karmakar D, Padhy PK (2019) Air pollution tolerance, anticipated performance, and metal accumulation indices of plant species for greenbelt development in urban industrial area. Chemosphere 237:124522. https://doi.org/10.1016/j.chemosphere.2019.124522
Kashyap R, Sharma R, Uniyal SK (2018) Bioindicator responses and performance of plant species along a vehicular pollution gradient in western Himalaya. Environ Monit Assess 190(5):302. https://doi.org/10.1007/s10661-018-6682-7
Kavitha KS, Satish S (2013) Evaluation of antimicrobial and antioxidant activities from Toonaciliata Roemer. J Analyt Sci and Techn 4:23. https://doi.org/10.1186/2093-3371-4-23
Kumar P, Kumar V, Adelodun B, Bedeković D, Kos I, Širić I, Alamri SAM, Alrumman SA, Eid EM, Abou Fayssal S, Goala M, Arya AK, Bachheti A, Choi KS, Ajibade FO, Silva LFO (2022) Sustainable use of sewage sludge as a casing material for button mushroom (Agaricusbisporus) cultivation: experimental and prediction modeling studies for uptake of metal elements. J Fungi 8(2):112. https://doi.org/10.3390/jof8020112
Kumar V, Thakur RK, Kumar P (2020) Predicting heavy metals uptake by spinach (Spinacia oleracea) grown in integrated industrial wastewater irrigated soils of Haridwar, India. Environ Monit Assess 192–709. https://doi.org/10.1007/s10661-020-08673-9
Liu Y, Zhou Y, Lu J (2020) Exploring the relationship between air pollution and meteorological conditions in China under environmental governance. Sci Rep 10:14518. https://doi.org/10.1038/s41598-020-71338-7
Liu YJ, Ding H (2008) Variation in air pollution tolerance index of plants near a steel factory: implication for landscape plant species selection for industrial areas. WSEAS Trans Environ Develop 4:24–32
Mabhiza D, Chitemerere T, Mukanganyama S (2016) Antibacterial properties of alkaloid extracts from Callistemon citrinus and Vernonia adoensis against Staphylococcus aureus and Pseudomonas aeruginosa. Int J Med Chem 7. https://doi.org/10.1155/2016/6304163.
Malav LC, Kumar S, Islam S, Chaudhary P, Khan SA (2022) Assessing the environmental impact of air pollution on crops by monitoring air pollution tolerance index (APTI) and anticipated performance index (API). Environ Sci Pollut Res. https://doi.org/10.1007/s11356-022-19505-3
Mandal K, Dhal NK (2022) Pollution resistance assessment of plants around chromite mine based on anticipated performance index, dust capturing capacity and metal accumulation index. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-022-20246-6
Mondal S, Singh G (2022) Air pollution tolerance, anticipated performance, and metal accumulation capacity of common plant species for green belt development. Environ Sci Pollut Res 29:25507–25518. https://doi.org/10.1007/s11356-021-17716-8
Mor S, Singh T, Bishnoi NR, Bhukal S, Ravindra K (2022) Understanding seasonal variation in ambient air quality and its relationship with crop residue burning activities in an agrarian state of India. Environ Sci Pollut Res Int 29(3):4145–4158. https://doi.org/10.1007/s11356-021-15631-6
Mukhopadhyay S, Dutta R, Dhara A (2021) Assessment of air pollution tolerance index of Murrayapaniculata (L.) Jack in Kolkata metro city, West Bengal, India. Urban Climate 39:100977. https://doi.org/10.1016/j.uclim.2021.100977
Nandan A, Siddiqui NA, Singh C, Aeri A, Gwenzi W, Ighalo JO, Nagliate PC, Meili L, Singh P, Chaukura N, Rangabhashiyam S (2021) COVID-19 pandemic in Uttarakhand, India: Environmental recovery or degradation? J Environ Chem Eng 9(6):106595. https://doi.org/10.1016/j.jece.2021.106595
Naseer S, Hussain S, Naeem N, Pervaiz M, Rahman M (2018) The phytochemistry and medicinal value of Psidiumguajava (guava). Clin Phytosci 4:32. https://doi.org/10.1186/s40816-018-0093-8
Ogunkunle CO, Suleiman LB, Oyedeji S, Awotoye OO, Fatoba PO (2015) Assessing the air pollution tolerance index and anticipated performance index of some tree species for biomonitoring environmental health. Agroforest Syst 89:447–454. https://doi.org/10.1007/s10457-014-9781-7
Ojha N, Sharma A, Kumar M, Girach I, Ansari TU, Sharma SK, Singh N, Pozzer A, Gunthe SS (2020) On the widespread enhancement in fine particulate matter across the Indo-Gangetic Plain towards winter. Sci Rep 10:5862. https://doi.org/10.1038/s41598-020-62710-8
Prajapati SK, Tripathi BD (2008) Seasonal variation of leaf dust accumulations and pigment content in plant species exposed to urban particulates pollution. J Environ Qual 37:865
Prusty BA, Mishra PC, Azeezb PA (2005) Dust accumulation and leaf pigment content in vegetation near the national highway at Sambalpur, Orissa, India. Ecotoxicol Environ Saf 60:228–235. https://doi.org/10.1016/j.ecoenv.2003.12.013
Rai PK (2019) Particulate matter tolerance of plants (APTI and API) in a biodiversity hotspot located in a tropical region: Implications for eco-control. Part Sci Technol 38(2):193–202. https://doi.org/10.1080/02726351.2018.1527800
Rai PK, Panda LL (2014) Dust capturing potential and air pollution tolerance index (APTI) of some roadside tree vegetation in Aizawl, Mizoram, India: an Indo-Burma hot spot region. Air Qual Atmos Hlth 7(1):93–101. https://doi.org/10.1007/s11869-013-0217-8
Rao MN, Rao HNV (1998) Air pollution. Tata McGraw Hill Publishing Company Limited, New Delhi
Roy A, Bhattacharya T, Kumari M (2020) Air pollution tolerance, metal accumulation and dust capturing capacity of common tropical trees in commercial and industrial sites. Sci Total Environ 722:137622
Sadasivam S, Manikam A (1991) Biochemical methods for agriculture science. Wiley Eastern Ltd., New Delhi
Shakeel T, Hussain M, Shah GM, Gul I (2022) Impact of vehicular emissions on anatomical and morphological characteristics of vascular plants: a comparative study. Chemosphere 287(1):131937. https://doi.org/10.1016/j.chemosphere.2021.131937
Shams SR, Jahani A, Kalantary S, Moeinaddini M, Khorasani N (2021a) Artificial intelligence accuracy assessment in NO2 concentration forecasting of metropolises air. Sci Rep 11:1805. https://doi.org/10.1038/s41598-021-81455-6
Shams SR, Jahani A, Kalantary S, Moeinaddini M, Khorasani N (2021) The evaluation on artificial neural networks (ANN) and multiple linear regressions (MLR) models for predicting SO2 concentration. Urban Climate 37:100837. https://doi.org/10.1016/j.uclim.2021.100837
Sharma P, Peshin SK, Soni VK, Singh S, Beig G, Ghosh C (2022) Seasonal dynamics of particulate matter pollution and its dispersion in the city of Delhi, India. Meteorol Atmos Phys 134:28. https://doi.org/10.1007/s00703-021-00852-8
Shrestha S, Baral B, Dhital NB, Yang H-H (2021) Assessing air pollution tolerance of plant species in vegetation traffic barriers in Kathmandu Valley, Nepal. Sustain Environ Res 31:3. https://doi.org/10.1186/s42834-020-00076-2
Singh G, Giri A, Paul S (2017) Pinusroxburghii Sarg. (Chir Pine): a valuable forest resource of Uttarakhand. Indian For 143:700–709
Singh H, Yadav M, Kumar N, Kumar A, Kumar M (2020) Assessing adaptation and mitigation potential of roadside trees under the influence of vehicular emissions: a case study of Grevillea robusta and Mangifera indica planted in an urban city of India. PLoS ONE 15(1). https://doi.org/10.1371/journal.pone.0227380
Singh SK, Rao DN (1983) Evaluation of the plants for their tolerance of air pollution. In Proceedings of Symposium on Air Pollution Control 218–224. IIT, Delhi
Sinha S, Tripathi AK, Verma N (2017) Air pollution tolerance index of selected tree species of Doon Valley of Uttarakhand (India). Indian Forester 143(2):149–156
Suriano D, Penza M (2022) Assessment of the performance of a low-cost air quality monitor in an indoor environment through different calibration models. Atmosphere 13:567. https://doi.org/10.3390/atmos13040567
Thawale PR, Satheesh Babu S, Wakode RR, Singh SK, Kumar S, Juwarkar AA (2011) Biochemical changes in plant leaves as a biomarker of pollution due to anthropogenic activity. Environ Monit Assess 177(1–4):527–535. https://doi.org/10.1007/s10661-010-1653-7
West PW, Gaeke GC (1956) Fixation of sulfur dioxide as disulfitomercurate (II) and subsequent colorimetric estimation. Anal Chem 28(12):1816–1819
WHO (2022) Air pollution.https://www.who.int/health-topics/air-pollution#tab=tab_1. Accessed 9 Aug 2022
Wróblewska K, Jeong BR (2021) Effectiveness of plants and green infrastructure utilization in ambient particulate matter removal. Environ Sci Eur 33:110. https://doi.org/10.1186/s12302-021-00547-2
Xie Y, Wang Y, Zhang K, Dong W, Lv B, Bai Y (2015) Daily estimation of ground-level PM2.5 concentrations over Beijing using 3km resolution MODIS AOD. Environ Sci Technol 19:12280–12288
Yousefian F, Faridi S, Azimi F, Aghaei M, Shamsipour M, Yaghmaeian K, Hassanvand MS (2020) Temporal variations of ambient air pollutants and meteorological influences on their concentrations in Tehran during 2012–2017. Sci Rep 10:292. https://doi.org/10.1038/s41598-019-56578-6
Zhao X, Guo P, Yang Y, Peng H (2021) Effects of air pollution on physiological traits of Ligustrumlucidum Ait. leaves in Luoyang. China. Environ Monit Assess 193(8):530. https://doi.org/10.1007/s10661-021-09338-x