A binary packing material-based method for estimating small-strain shear modulus of sandy soils

Qi Wu1, Tianzhu Hang1, Jiawei Jiang1, Chengshun Xu2, Guoxing Chen3
1Institute of Geotechnical Engineering, Nanjing Tech University, Nanjing 210009, China.
2Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China
3Civil Engineering and Earthquake Disaster Prevention Center of Jiangsu Province, Nanjing 210009, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

ASTM (2011) Standard practice for classification of soils for engineering purposes (unified soil classification system). ASTM D2487. ASTM, West Conshohocken

ASTM (2011) Standard Test Method for Particle-Size Analysis of Soils. ASTM D422. ASTM, West Conshohocken

ASTM (2011) Standard test methods for specific gravity of soil solids by water pycnometer. ASTM D854. ASTM, West Conshohocken

ASTM (2011) Standard test methods for maximum index density and unit weight of soils using a vibratory table. ASTM D4253. ASTM, West Conshohocken

ASTM (2011) Standard test methods for minimum index density and unit weight of soils and calculation of relative density. ASTM D4254. ASTM, West Conshohocken

Andrus RD, Stokoe IIKH (2000) Liquefaction resistance of soils from shear-wave velocity. J Geotech Geoenviron Eng 126(11):1015–1025. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:11(1015)

Barnett N, Rahman MM, Karim MR, Nguyen HBK, Carraro JAH (2020) Equivalent state theory for mixtures of sand with non-plastic fines: a DEM investigation. Géotechnique. https://doi.org/10.1680/jgeot.19.p.103

Baxter CDP, Bradshaw AS, Green RA, Wang JH (2008) Correlation between cyclic resistance and shear-wave velocity for providence silts. J Geotech Geoenviron Eng 134(1):37–46. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:1(37)

Been K, Jefferies MG (1985) A state parameter for sands. Géotechnique 35(2):99–102. https://doi.org/10.1680/geot.1985.35.2.99

Belkhatir M, Schanz T, Arab A (2013) Effect of fines content and void ratio on the saturated hydraulic conductivity and undrained shear strength of sand-silt mixtures. Environ Earth Sci 70(6):137–151. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000177

Cai G, Liu S, Tong L (2010) Field evaluation of deformation characteristics of a lacustrine clay deposit using seismic piezocone tests. Eng Geol 116(3–4):251–260. https://doi.org/10.1016/j.enggeo.2010.09.006

Cai G, Puppala AJ, Liu S (2014) Characterization on the correlation between shear wave velocity and piezocone tip resistance of Jiangsu clays. Eng Geol 171:96–103. https://doi.org/10.1016/j.enggeo.2013.12.012

Chang WJ, Chang CW, Zeng JK (2014) Liquefaction characteristics of gap-graded gravelly soils in K0 condition. Soil Dyn Earthq Eng 56:74–85. https://doi.org/10.1016/j.soildyn.2013.10.005

Chen YL, Zhang YN (2016) Experimental study of effects of non-plastic fines on liquefaction properties of saturated sand. Rock Soil Mech 37(2):507–516. https://doi.org/10.16285/j.rsm.2016.02.024. (in Chinese)

Chen GX, Zhou ZL, Pan H, Tian S, Li XJ (2016) The influence of undrained cyclic loading patterns and consolidation states on the deformation features of saturated fine sand over a wide strain range. Eng Geol 204:77–93. https://doi.org/10.1016/j.enggeo.2016.02.008

Chen GX, Kong MY, Khoshnevisan S, Chen WY, Li XJ (2019) Calibration of Vs-based empirical models for assessing soil liquefaction potential using expanded database. Bull Eng Geol Environ 78(2):945–957. https://doi.org/10.1007/s10064-017-1146-9

Chen GX, Zhao DF, Chen WY, Juang CH (2019) Excess pore water pressure generation in cyclic undrained testing. J Geotech Geoenviron Eng 145(7):04019022. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002057

Chen GX, Wu Q, Zhao K, Shen ZF, Yang J (2020) A binary packing material-based procedure for evaluating soil liquefaction triggering during earthquakes. J Geotech Geoenviron Eng. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002263

Chen GX, Wu Q, Zhou ZL, Ma WJ, Chen WY, Sara K, Yang J (2020) Undrained anisotropy and cyclic resistance of saturated silt subjected to various patterns of principal stress rotation. Géotechnique 70(4):317–331. https://doi.org/10.1680/jgeot.18.p.180

Chien LK, Oh YN (2002) Influence of fines content and initial shear stress on dynamic properties of hydraulic reclaimed soil. Can Geotech J 39(1):242–253. https://doi.org/10.1139/t01-082

Choo H, Burns SE (2015) Shear wave velocity of granular mixtures of silica particles as a function of finer fraction, size ratios and void ratios. Granul Matter 17(5):567–578. https://doi.org/10.1007/s10035-015-0580-2

Dash HK, Sitharam TG (2009) Undrained cyclic pore pressure response of sand–silt mixtures: effect of nonplastic fines and other parameters. Geotech Geol Eng 27(4):501–517. https://doi.org/10.1007/s10706-009-9252-5

Gong J, Wang X, Li L, Nie ZH (2019) DEM study of the effect of fines content on the small-strain stiffness of gap-graded soils. Comput Geotech 112:35–40. https://doi.org/10.1016/j.compgeo.2019.04.008

Goudarzy M, Rahman MM, Konig D, Schanz T (2016) Influence of non-plastic fines content on maximum shear modulus of granular materials. Soils Found 56(6):973–983. https://doi.org/10.1016/j.sandf.2016.11.003

Goudarzy M, Rahemi N, Rahman MM, Schanz T (2017) Predicting the maximum shear modulus of sands containing nonplastic fines. J Geotech Geoenviron Eng 143(9):06017013. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001982

Gu XQ, Yang J, Huang M, S., Gao G., Y. (2015) Measurement of elastic parameters of dry sand using bender-extender element. Rock and Soil Mechanics 36(Suppl. 1):220–224

Hardin BO, Richart FE (1963) Elastic wave velocities in granular soils. J Soil Mech Found Div 89(SM1):39–56

Hardin BO, Black WL (1966) Sand stiffness under various triaxial stresses. J Soil Mech Found Div 92(SM2):27–42

Hardin BO, Drnevich VP (1972) Shear modulus and damping in soil: design equation and curves. J Soil Mech Found Div 98(7):667–692

Hsiao DH, Phan VTA, Hsieh YT, Kuo HY (2015) Engineering behavior and correlated parameters from obtained results of sand–silt mixtures. Soil Dyn Earthq Eng 77(5):137–151. https://doi.org/10.1016/j.soildyn.2015.05.005

Huang YT, Huang AB, Kuo YC, Tsai MD (2004) A laboratory study on the undrained strength of a silty sand from Central Western Taiwan. Soil Dyn Earthq Eng 24:733–743. https://doi.org/10.1016/j.soildyn.2004.06.013

Ishihara K (1996) Soil behavior in earthquake geotechnics. Clarendon Press, Oxford

Iwasaki T, Tatsuoka F (1977) Effect of grain size and grading on dynamic shear moduli of sand. Soils Found 17(3):19–35. https://doi.org/10.3208/sandf1972.17.3_19

Jamiolkowski M, Lancellotta R, Lo Presti DCF (1995) Remarks on the stiffness at small strains of six Italian clays. In: Proceedings of the pre-failure deformation of geomaterials: the International Symposium, A.A. Balkema, Aapporo, Japan, pp 817–836

Jiang JW, Tao R, El Naggar MH, Liu H, Du XL (2024) Seismic performance and vulnerability analysis for bifurcated tunnels in soft soil. Comput Geotech 167:106065. https://doi.org/10.1016/j.compgeo.2024.106065

Karim ME, Alam MJ (2016) Undrained monotonic and cyclic response of sand–silt mixtures. Int J Geotech Eng 10(3):223–235. https://doi.org/10.1179/1939787915Y.0000000023

Ladd RS (1978) Preparing specimens using undercompaction. Geotech Test J 1(1):16–23. https://doi.org/10.1520/gtj10364j

Lade PV, Yamamuro JA (1997) Effects of nonplastic fines on static liquefaction of sands. Can Geotech J 34(6):918–928. https://doi.org/10.1139/cgj-34-6-918

Lashkari A (2014) Recommendations for extension and re-calibration of an existing sand constitutive model taking into account varying non-plastic fines content. Soil Dyn Earthq Eng 61–62:212–238. https://doi.org/10.1016/j.soildyn.2014.02.012

Lashkaripour GR, Ajalloeian R (2003) Determination of silica sand stiffness. Eng Geol 68(3):225–236. https://doi.org/10.1016/S0013-7952(02)00229-6

Lee JS, Santamarina JC (2005) Bender elements: performance and signal interpretation. J Geotech Geoenviron Eng 131(9):1063–1070. https://doi.org/10.1061/(asce)1090-0241(2005)131:9(1063)

Liu X, Zhang N, Lan H (2019) Effects of sand and water contents on the small-strain shear modulus of loess. Eng Geol 2019(260):105202. https://doi.org/10.1016/j.enggeo.2019.105202

Liang K, Chen G, Du X, Xu C, Yang J (2023) A unified formula for small-strain shear modulus of sandy soils based on extreme void ratios. J Geotech Geoenviron Eng 149(2):04022127. https://doi.org/10.1061/JGGEFK.GTENG-10913

Mohammadi A, Qadimi A (2015) A simple critical state approach to predicting the cyclic and monotonic response of sands with different fines contents using the equivalent intergranular void ratio. Acta Geotech 10(5):587–606. https://doi.org/10.1007/s11440-014-0318-z

Naeini SA, Baziar MH (2004) Effect of fines content on steady-state strength of mixed and layered sampled of sand. Soil Dyn Earthq Eng 24(3):181–187. https://doi.org/10.1016/j.soildyn.2003.11.003

Ni Q, Tan TS, Dasari GR, Hight DW (2004) Contribution of fines to the compressive strength of mixed soils. Geotechnique 54(9):561–569. https://doi.org/10.1680/geot.2004.54.9.561

Ni Q, Tan TS, Dasari GR, Hight DW (2005) Discussion: contribution of fines to the compressive strength of mixed soils. Geotechnique 55(8):627–628. https://doi.org/10.1680/geot.2005.55.8.627

Oka LG, Dewoolkar M, Olson SM (2018) Comparing laboratory-based liquefaction resistance of a sand with non-plastic fines with shear wave velocity-based field case histories. Soil Dyn Earthq Eng 113:162–173. https://doi.org/10.1016/j.soildyn.2018.05.028

Omar MN, Abbiss CP, Taha MR, Nayan KA (2011) Prediction of long-term settlement on soft clay using shear wave velocity and damping characteristics. Eng Geol 123(4):259–270. https://doi.org/10.1016/j.enggeo.2011.06.004

Papadopoulou A, Tika T (2008) The effect of fines on critical state and liquefaction resistance characteristics of non-plastic silty sands. Soils Found 48(5):713–725. https://doi.org/10.3208/sandf.48.713

Payan M, Khoshghalb A, Senetakis K, Khalili N (2016) Effect of particle shape and validity of Gmax models for sand: a critical review and a new expression. Comput Geotech 72:28–41. https://doi.org/10.1016/j.compgeo.2015.11.003

Payan M, Senetakis K, Khoshghalb A, Khalili N (2017) Characterization of the small-strain dynamic behavior of silty sands; contribution of silica non-plastic fines content. Soil Dyn Earthq Eng 102:232–240. https://doi.org/10.1016/j.soildyn.2017.08.008

Polito CP (1999) The effects of non-plastic and plastic fines on the liquefaction of sandy soils. Ph.d. Thesis, Department of Civil Engineering, Virginia Polytechnic Institute and State University, Virginia, USA

Polito CP, Martin JR II (2001) Effects of nonplastic fines on the liquefaction resistance of sands. J Geotech Geoenviron Eng 127(5):408–415. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:5(408)

Prakasha KS, Chandrasekaran VS (2005) Behavior of marine sand-clay mixtures under static and cyclic triaxial shear. J Geotech Geoenviron Eng 131(2):213–222. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:2(213)

Rahman MM, Lo SR (2008) The prediction of equivalent granular steady state line of loose sand with fines. Geomech Geoengin Int J 3(3):179–190. https://doi.org/10.1080/17486020802206867

Rahman MM, Lo SR, Gnanendran CT (2008) On equivalent granular void ratio and steady state behavior of loose sand with fines. Can Geotech J 45(10):1439–1455. https://doi.org/10.1139/T08-064

Rahman MM, Lo SR, Baki MAL (2011) Equivalent granular state parameter and undrained behavior of sand–fines mixtures. Acta Geotech 6(4):183–194. https://doi.org/10.1007/s11440-011-0145-4

Rahman MM, Cubrinovski M, Lo SR (2012) Initial shear modulus of sandy soils and equivalent granular void ratio. Geomech Geoengin 7(3):219–226. https://doi.org/10.1080/17486025.2011.616935

Randolph MF, Dolwin J, Beck R (1994) Design of driven piles in sand. Geotechnique 44(3):427–448. https://doi.org/10.1680/geot.1994.44.3.427

Skempton AW (1954) The pore-pressure coefficients A and B. Geotechnique 4(4):143–147. https://doi.org/10.1680/geot.1954.4.4.143

Sahaphol T, Miura S (2005) Shear moduli of volcanic soils. Soil Dyn Earthq Eng 25:157–165. https://doi.org/10.1016/j.soildyn.2004.10.001

Salgado R, Bandini P, Karim A (2000) Shear strength and stiffness of silty sand. J Geotech Geoenviron Eng 126(5):451–462. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:5(451)

Seed HB, Wong RT, Idriss IM, Tokimatsu K (1986) Moduli and damping factors for dynamic analyzes of cohesionless soil. J Geotech Eng 112(11):1016–1032. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:11(1016)

Tao M, Figueroa JL, Saada AS (2004) Influence of nonplastic fines content on the liquefaction resistance of soil in terms of the unit energy In: Proceedings of the cyclic behavior of soils and liquefaction phenemena. A.A. Balkema Publishers Bochum, Germany, pp 223–231

Thevanayagam S (1998) Effect of fines and confining stress on undrained shear strength of silty sands. J Geotech Geoenviron Eng 124(6):479–491. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:6(479)

Thevanayagam S (2000) Liquefaction potential and undrained fragility of silty sands. In: Proceedings of the 12th world conference earthquake engineering CD-ROM, New Zealand Society for Earthquake Engineering, Wellington, New Zealand

Thevanayagam S (2003) Role of intergranular contacts on mechanisms causing liquefaction and slope failures in silty sands. Final Report. USGS Award No. 01HQGR0032 and 99HQGR0021, US Geological Survey, Department of Interior, USA

Thevanayagam S, Liang J (2001) Shear wave velocity relations for silty and gravely soils. In: Proceedings of the 4th international conference on soil dynamics and earthquake engineering, San Diego

Thevanayagam S, Martin GR (2002) Liquefaction in silty soils-screening and remediation issue. Soil Dyn Earthq Eng 22(9–12):1035–1042. https://doi.org/10.1016/S0267-7261(02)00128-8

Thevanayagam S, Shenthan T, Mohan S, Liang J (2002) Undrained fragility of clean sands, silty sands, and sandy silts. J Geotech Geoenviron Eng 128(10):849–859. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(849)

Wichtmann T, Hernandez M, Triantafyllidis T (2015) On the influence of a non-cohesive fines content on small strain stiffness, modulus degradation and damping of quartz sand. Soil Dyn Earthq Eng 69:103–114. https://doi.org/10.1016/j.soildyn.2014.10.017

Wu Q, Zhu EC, Xiao X, Li YX, Chen GX (2024) Cyclic resistance evaluation of marine clay based on CPTu data: a case study of Shaba Wind Farm. Front. Mar. Sci. 10:1300005. https://doi.org/10.3389/fmars.2023.1300005

Xenaki VC, Athanasopoulos GA (2003) Liquefaction resistance of sand–silt mixtures: an experimental investigation of the effect of fines. Soil Dyn Earthq Eng 23(3):1–12. https://doi.org/10.1016/S0267-7261(02)00210-5

Yang J, Yan XR (2009) Site response to multi-directional earthquake loading: a practical procedure. Soil Dyn Earthq Eng 29(4):710–721. https://doi.org/10.1016/j.soildyn.2008.07.008

Yang J, Wei LM (2012) Collapse of loose sand with the addition of fines: the role of particle shape. Géotechnique 62(12):1111–1125. https://doi.org/10.1680/geot.11.P.062

Yang J, Gu XQ (2013) Shear stiffness of granular material at small-strain: does it depend on grain size? Géotechnique 63(2):165–179. https://doi.org/10.1680/geot.11.P.083

Yang J, Liu X (2016) Shear wave velocity and stiffness of sand: the role of non-plastic fines. Géotechnique 66(6):1–15. https://doi.org/10.1680/jgeot.16.d.006

Yang SL, Lacasse S, Sandven RF (2006) Determination of the transitional fines content of mixtures of sand and non-plastic fines. Geotech Test J 29(2):102–107. https://doi.org/10.1016/j.sandf.2014.12.017

Yilmaz Y (2009) A study on the limit void ratio characteristics of medium to fine mixed graded sands. Eng Geol 104(3–4):290–294

Yoo JK, Park D, Baxter CDP (2018) Estimation of drained shear strength of granular soil from shear wave velocity and confining stress. J Geotech Geoenviron Eng 144(6):04018027. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001876

Youn JU, Choo YW, Kim DS (2008) Measurement of small-strain shear modulus G max, of dry and saturated sands by bender element, resonant column, and torsional shear tests. Can Geotech J 45(10):1426–1438

Zhou YG, Xia P, Ling DS, Chen YM (2020) Liquefaction case studies of gravelly soils during the 2008 Wenchuan earthquake. Eng Geol 274:105691. https://doi.org/10.1016/j.enggeo.2020.105691

Zhu JQ, Kong LW, Gao WH, Li XW (2015) Multi-ways to identify the transitional fine content of cohesionless soil with fines. J Hydraul Eng 46(9):1103–1109. https://doi.org/10.13243/j.cnki.slxb.20141409

Zhuang HY, Wang R, Chen GX, Miao Y, Zhao K (2018) Shear modulus reduction of saturated sand under large liquefaction-induced deformation in cyclic torsional shear tests. Eng Geol 240:110–122. https://doi.org/10.1016/j.enggeo.2018.04.018