A bibliometric analysis of agricultural vulnerability in the context of climate change from 2010 to 2021
Spatial Information Research - Trang 1-14 - 2023
Tóm tắt
Climate change is a genuine issue threatening the presence of species and livelihoods, consequently causing the vulnerability. Agricultural vulnerability is seriously undermined by regular disasters, caused by climate change. Therefore, researchers and policymakers are showing their interest in the effect of climate change on agricultural vulnerability through publishing research works. This study aims to perform a bibliometric analysis of climate change-induced agricultural vulnerability using the Web of Science and Scopus databases, and PRISMA method. The study highlights the current trend, hot-spot area, and their development through a literature dataset taken into consideration from 2010 to 2021. The outcome showed that the USA, UK, Australia, and China are the countries with high publications potentials. Consequently, there has been a significant increase (R2 = 0.90) in highlighted research area (2010–2021). The findings revealed that climate change and agricultural vulnerability research expanded gradually into different subject categories. The most frequent keywords were ‘climate change,’ ‘vulnerability,’ ‘adaptation,’ and ‘agriculture.’ The result showed that five clusters displayed the co-occurrences of term map. With the help of each clustering group, development of the respective research field can be smartly analyzed. Based on the findings, several research gaps are identified and offer opportunities for further studies.
Tài liệu tham khảo
IPCC, C. W. T. (2007). Climate change 2007: Synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change, 104.
Nalau, J., & Verrall, B. (2021). Mapping the evolution and current trends in climate change adaptation science. Climate Risk Management, 32, 100290. https://doi.org/10.1016/j.crm.2021.100290
Matteo, G., Nardi, P., Grego, S., & Guidi, C. (2018). Bibliometric analysis of climate change vulnerability assessment research. Environment Systems and Decisions, 38(4), 508–516. https://doi.org/10.1007/s10669-018-9687-4
Bennett, N. J., Blythe, J., Tyler, S., & Ban, N. C. (2016). Communities and change in the anthropocene: Understanding social-ecological vulnerability and planning adaptations to multiple interacting exposures. Regional Environmental Change, 16(4), 907–926. https://doi.org/10.1007/s10113-015-0839-5
Hufschmidt, G. (2011). A comparative analysis of several vulnerability concepts. Natural Hazards, 58(2), 621–643. https://doi.org/10.1007/s11069-011-9823-7
Shukla, R., Sachdeva, K., & Joshi, P. K. (2018). Demystifying vulnerability assessment of agriculture communities in the Himalayas: A systematic review. Natural Hazards, 91(1), 409–429. https://doi.org/10.1007/s11069-017-3120-z
Liu, W., Wang, J., Li, C., Chen, B., & Sun, Y. (2019). Using bibliometric analysis to understand the recent progress in agroecosystem services research. Ecological Economics, 156, 293–305. https://doi.org/10.1016/j.ecolecon.2018.09.001
Wang, Z., Zhao, Y., & Wang, B. (2018). A bibliometric analysis of climate change adaptation based on massive research literature data. Journal of Cleaner Production, 199, 1072–1082. https://doi.org/10.1016/j.jclepro.2018.06.183
Huang, L., Chen, K., & Zhou, M. (2020). Climate change and carbon sink: A bibliometric analysis. Environmental Science and Pollution Research, 27(8), 8740–8758. https://doi.org/10.1007/s11356-019-07489-6
Kim, B. J., Jeong, S., & Chung, J. B. (2021). Research trends in vulnerability studies from 2000 to 2019: Findings from a bibliometric analysis. International Journal of Disaster Risk Reduction, 56, 102141. https://doi.org/10.1016/j.ijdrr.2021.102141
Fu, H. Z., & Waltman, L. (2022). A large-scale bibliometric analysis of global climate change research between 2001 and 2018. Climatic Change, 170(3), 1–21. https://doi.org/10.21203/rs.3.rs-759304/v1
Li, J., Wang, M. H., & Ho, Y. S. (2011). Trends in research on global climate change: A Science Citation Index Expanded-based analysis. Global and Planetary Change, 77(1–2), 13–20. https://doi.org/10.1016/j.gloplacha.2011.02.005
Wang, B., Pan, S. Y., Ke, R. Y., Wang, K., & Wei, Y. M. (2014). An overview of climate change vulnerability: A bibliometric analysis based on Web of Science database. Natural Hazards, 74(3), 1649–1666. https://doi.org/10.1007/s11069-014-1260-y
Wei, Y. M., Mi, Z. F., & Huang, Z. (2015). Climate policy modeling: An online SCI-E and SSCI based literature review. Omega, 57, 70–84. https://doi.org/10.1016/j.omega.2014.10.011
Aleixandre-Benavent, R., Aleixandre-Tudó, J. L., Castelló-Cogollos, L., & Aleixandre, J. L. (2017). Trends in scientific research on climate change in agriculture and forestry subject areas (2005–2014). Journal of Cleaner Production, 147, 406–418. https://doi.org/10.1016/j.jclepro.2017.01.112
Becerra Ruiz, M. J., Pimentel, M. A., De Souza, E. B., & Tovar, G. I. (2020). Geospatiality of climate change perceptions on coastal regions: A systematic bibliometric analysis. Geography and Sustainability, 1(3), 209–219. https://doi.org/10.1016/j.geosus.2020.09.002
Sweileh, W. M. (2020). Bibliometric analysis of peer-reviewed literature on food security in the context of climate change from 1980 to 2019. Agriculture & Food Security, 9(1), 1–15. https://doi.org/10.1186/s40066-020-00266-6
Hou, Y., & Wang, Q. (2021). A bibliometric study about energy, environment, and climate change. Environmental Science and Pollution Research, 28(26), 34187–34199. https://doi.org/10.1007/s11356-021-14059-2
Bartol, T., & Mackiewicz-Talarczyk, M. (2015). Bibliometric analysis of publishing trends in fiber crops in Google Scholar, Scopus, and Web of Science. Journal of Natural Fibers, 12(6), 531–541. https://doi.org/10.1080/15440478.2014.972000
Liu, W., Yao, S., Wang, J., & Liu, M. (2019). Trends and features of agroforestry research based on bibliometric analysis. Sustainability, 11(12), 3473. https://doi.org/10.3390/su11123473
Hualin, X., Zhang, Y., & Duan, K. (2020). Evolutionary overview of urban expansion based on bibliometric analysis in Web of Science from 1990 to 2019. Habitat International, 95, 102100. https://doi.org/10.1016/j.habitatint.2019.102100
Echchakoui, S. (2020). Why and how to merge Scopus and Web of Science during bibliometric analysis: The case of sales force literature from 1912 to 2019. Journal of Marketing Analytics, 8(3), 165–184. https://doi.org/10.1016/j.habitatint.2019.102100
Selçuk, A. A. (2019). A guide for systematic reviews: PRISMA. Turkish Archives Of Otorhinolaryngology, 57(1), 57–58. https://doi.org/10.5152/tao.2019.4058
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., & Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. International Journal of Surgery, 88, 105906. https://doi.org/10.1186/s13643-021-01626-4
Persson, O., Danell, R., & Schneider, J. W. (2009). How to use Bibexcel for various types of bibliometric analysis. Celebrating Scholarly Communication Studies: A Festschrift for OllePersson at his 60th Birthday, 5, 9–24.
Van Eck, N., & Waltman, L. (2010). Software survey: VOS viewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. https://doi.org/10.1007/s11192-009-0146-3
Haunschild, R., Bornmann, L., & Marx, W. (2016). Climate change research in view of bibliometrics. PLoS ONE, 11(7), e0160393. https://doi.org/10.1371/journal.pone.0160393
Garfield, E. (2006). The history and meaning of the journal impact factor. JAMA, 295(1), 90–93. https://doi.org/10.1001/jama.295.1.90
Garfield, E. (2006). Citation indexes for science. A new dimension in documentation through association of ideas. International Journal of Epidemiology, 35(5), 1123–1127. https://doi.org/10.1093/ije/dyl189
Hou, Q., Mao, G., Zhao, L., Du, H., & Zuo, J. (2015). Mapping the scientific research on life cycle assessment: A bibliometric analysis. The International Journal of Life Cycle Assessment, 20(4), 541–555. https://doi.org/10.1007/s11367-015-0846-2
Ganda, F. (2019). The impact of innovation and technology investments on carbon emissions in selected organisation for economic Co-operation and development countries. Journal of Cleaner Production, 217, 469–483. https://doi.org/10.1016/j.jclepro.2019.01.235
Smit, B., & Wandel, J. (2006). Adaptation, adaptive capacity and vulnerability. Global Environmental Change, 16(3), 282–292. https://doi.org/10.1016/j.gloenvcha.2006.03.008
Yoro, K. O., & Daramola, M. O. (2020). CO2 emission sources, greenhouse gases, and the global warming effect. In Advances in carbon capture (pp. 3–28). Woodhead Publishing. https://www.sciencedirect.com/science/article/abs/pii/B9780128196571000013
Wei, T., Wu, J., & Chen, S. (2021). Keeping track of greenhouse gas emission reduction progress and targets in 167 cities worldwide. Frontiers in Sustainable Cities, 3, 696381. https://doi.org/10.3389/frsc.2021.696381
Song, Y., Zhang, M., & Zhou, M. (2019). Study on the decoupling relationship between CO2 emissions and economic development based on two-dimensional decoupling theory: A case between China and the United States. Ecological Indicators, 102, 230–236. https://doi.org/10.1016/j.ecolind.2019.02.044
Füssel, H. M., & Klein, R. J. (2006). Climate change vulnerability assessments: An evolution of conceptual thinking. Climatic Change, 75(3), 301–329. https://doi.org/10.1007/s10584-006-0329-3
Shahid, S. (2012). Vulnerability of the power sector of Bangladesh to climate change and extreme weather events. Regional Environmental Change, 12(3), 595–606. https://doi.org/10.1007/s10113-011-0276-z
Thornton, P. K., Ericksen, P. J., Herrero, M., & Challinor, A. J. (2014). Climate variability and vulnerability to climate change: A review. Global Change Biology, 20(11), 3313–3328. https://doi.org/10.1111/gcb.12581
Aleksandrova, M., Gain, A. K., & Giupponi, C. (2016). Assessing agricultural systems vulnerability to climate change to inform adaptation planning: An application in Khorezm, Uzbekistan. Mitigation and Adaptation Strategies for Global Change, 21(8), 1263–1287. https://doi.org/10.1007/s11027-015-9655-y
Escarcha, J. F., Lassa, J. A., & Zander, K. K. (2018). Livestock under climate change: A systematic review of impacts and adaptation. Climate, 6(3), 54. https://doi.org/10.3390/cli6030054
Pribyl, K., Nash, D. J., Klein, J., & Endfield, G. H. (2019). The role of drought in agrarian crisis and social change: The famine of the 1890s in south-eastern Africa. Regional Environmental Change, 19(8), 2683–2695. https://doi.org/10.1007/s10113-019-01563-y
Shukla, R., Agarwal, A., Gornott, C., Sachdeva, K., & Joshi, P. K. (2019). Farmer typology to understand differentiated climate change adaptation in Himalaya. Scientific Reports, 9(1), 1–12. https://doi.org/10.1038/s41598-019-56931-9
Singh, S. (2020). Farmers’ perception of climate change and adaptation decisions: A micro-level evidence from Bundelkhand Region, India. Ecological Indicators, 116, 106475. https://doi.org/10.1016/j.ecolind.2020.106475
Malhi, G. S., Kaur, M., & Kaushik, P. (2021). Impact of climate change on agriculture and its mitigation strategies: A review. Sustainability, 13(3), 1318. https://doi.org/10.3390/su13031318
Einecker, R., & Kirby, A. (2020). Climate change: A bibliometric study of adaptation, mitigation and resilience. Sustainability, 12(17), 6935. https://doi.org/10.3390/su12176935
Rana, I. A. (2020). Disaster and climate change resilience: A bibliometric analysis. International Journal of Disaster Risk Reduction, 50, 101839. https://doi.org/10.1016/j.ijdrr.2020.101839
Islam, M. M., Chowdhury, M. A. M., Begum, R. A., & Amir, A. A. (2022). A bibliometric analysis on the research trends of climate change effects on economic vulnerability. Environmental Science and Pollution Research, 1, 16. https://doi.org/10.1007/s11356-022-20524-3
Sarkar, A., Wang, H., Rahman, A., Memon, W. H., & Qian, L. (2022). A bibliometric analysis of sustainable agriculture: Based on the Web of Science (WOS) platform. Environmental Science and Pollution Research, 29(26), 38928–38949. https://doi.org/10.1007/s11356-022-19632-x
Adger, W. N. (2006). Vulnerability. Global Environmental Change, 16(3), 268–281. https://doi.org/10.1016/j.gloenvcha.2006.02.006
Solomon, S. (Ed.). (2007). Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC (Vol. 4). Cambridge University Press.
Deressa, T. T., Hassan, R. M., Ringler, C., Alemu, T., & Yesuf, M. (2009). Determinants of farmers’ choice of adaptation methods to climate change in the Nile Basin of Ethiopia. Global Environmental Change, 19(2), 248–255. https://doi.org/10.1016/j.gloenvcha.2009.01.002
Morton, J. F. (2007). The impact of climate change on smallholder and subsistence agriculture. Proceedings of the National Academy of Sciences, 104(50), 19680–19685. https://doi.org/10.1073/pnas.0701855104
Hahn, M. B., Riederer, A. M., & Foster, S. O. (2009). The Livelihood Vulnerability Index: A pragmatic approach to assessing risks from climate variability and change—a case study in Mozambique. Global Environmental Change, 19(1), 74–88. https://doi.org/10.1016/j.gloenvcha.2008.11.002
Adger, W. N., Dessai, S., Goulden, M., Hulme, M., Lorenzoni, I., Nelson, D. R., & Wreford, A. (2009). Adger limits to adaptation. Climatic Change, 93, 335–354. https://doi.org/10.1007/s10584-008-9520-z
Turner, B. L., Matson, P. A., McCarthy, J. J., Corell, R. W., Christensen, L., Eckley, N., & Tyler, N. (2003). Illustrating the coupled human-environment system for vulnerability analysis: Three case studies. Proceedings of the National Academy of Sciences, 100(14), 8080–8085. https://doi.org/10.1073/pnas.1231334100
Brien, K., Leichenko, R., Kelkar, U., Venema, H., Aandahl, G., Tompkins, H., & West, J. (2004). Mapping vulnerability to multiple stressors: Climate change and globalization in India. Global Environmental Change, 14(4), 303–313. https://doi.org/10.1016/j.gloenvcha.2004.01.001
Bryan, E., Deressa, T. T., Gbetibouo, G. A., & Ringler, C. (2009). Adaptation to climate change in Ethiopia and South Africa: Options and constraints. Environmental Science & Policy, 12(4), 413–426. https://doi.org/10.1016/j.envsci.2008.11.002
Howden, M., Soussana, J. F., Tubiello, F. N., Chhetri, N., Dunlop, M., & Aggarwal, P. (2007). Adaptation strategies for climate change. ProcNatlAcadSci, 104, 19691–19698. https://doi.org/10.1073/pnas.0701890104
Mertz, O., Mbow, C., Reenberg, A., & Diouf, A. (2009). Farmers’ perceptions of climate change and agricultural adaptation strategies in rural Sahel. Environmental Management, 43(5), 804–816. https://doi.org/10.1007/s00267-008-9197-0
Lobell, D. B., Burke, M. B., Tebaldi, C., Mastrandrea, M. D., Falcon, W. P., & Naylor, R. L. (2008). Prioritizing climate change adaptation needs for food security in 2030. Science, 319(5863), 607–610. https://doi.org/10.1126/science.1152339
Grothmann, T., & Patt, A. (2005). Adaptive capacity and human cognition: The process of individual adaptation to climate change. Global Environmental Change, 15(3), 199–213. https://doi.org/10.1016/j.gloenvcha.2005.01.002