A benchmark test suite for evolutionary many-objective optimization
Tóm tắt
Từ khóa
Tài liệu tham khảo
Li B, Li J, Tang K, Yao X (2015) Many-objective evolutionary algorithms: a survey. ACM Comput Surv 48(1):13
Yang S, Li M, Liu X, Zheng J (2013) A grid-based evolutionary algorithm for many-objective optimization. IEEE Trans Evol Comput 17(5):721–736
Zhang X, Tian Y, Jin Y (2015) A knee point driven evolutionary algorithm for many-objective optimization. IEEE Trans Evol Comput 19(6):761–776
Wang H, Jiao L, Yao X (2015) Two_arch2: an improved two-archive algorithm for many-objective optimization. IEEE Trans Evol Comput 19(4):524–541
Deb K, Jain H (2014) An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans Evol Comput 18(4):577–601
Li K, Zhang Q, Kwong S (2015) An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Trans Evol Comput 19(5):694–716
Cheng R, Jin Y, Olhofer M, Sendhoff B (2016) A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Trans Evol Comput 20(5):773–791
Bader J, Zitzler E (2011) HypE: an algorithm for fast hypervolume-based many-objective optimization. Evol Comput 19(1):45–76
Deb K, Thiele L, Laumanns M, Zitzler E (2005) Scalable test problems for evolutionary multiobjective optimization. In: Abraham A, Jain L, Goldberg R (eds) Evolutionary multiobjective optimization. Theoretical advances and applications, Springer, Berlin, pp 105–145
Huband S, Hingston P, Barone L, While L (2006) A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans Evol Comput 10(5):477–506
Köppen M, Yoshida K (2007) Substitute distance assignments in NSGA-II for handling many-objective optimization problems. In: Evolutionary multi-criterion optimization (EMO), pp 727–741
Ishibuchi H, Hitotsuyanagi Y, Tsukamoto N, Nojima Y (2010) Many-objective test problems to visually examine the behavior of multiobjective evolution in a decision space. In: International Conference on Parallel Problem Solving from Nature (PPSN), pp 91–100
Saxena D, Zhang Q, Duro J, Tiwari A (2011) Framework for many-objectivet test problems with both simple and complicated Pareto-set shapes. In: Evolutionary multi-criterion optimization (EMO), pp 197–211
Li M, Yang S, Liu X (2014) A test problem for visual investigation of high-dimensional multi-objective search. In: IEEE Congress on Evolutionary Computation (CEC), pp 2140–2147
Cheung Y-M, Gu F, Liu H-L (2016) Objective extraction for many-objective optimization problems: Algorithm and test problems. IEEE Trans Evol Comput 20(5):755–772
Cheng R, Jin Y, Olhofer M, Sendhoff B (2016) Test problems for large-scale multiobjective and many-objective optimization. IEEE Trans Cybern (in press)
Masuda H, Nojima Y, Ishibuchi H (2016) Common properties of scalable multiobjective problems and a new framework of test problems. In: IEEE Congress on Evolutionary Computation (CEC). IEEE, pp 3011–3018
Cheng R, Jin Y, Narukawa K (2015) Adaptive reference vector generation for inverse model based evolutionary multiobjective optimization with degenerate and disconnected pareto fronts. In: Proceedings of the International Conference on Evolutionary Multi-Criterion Optimization. Springer, New York, pp 127–140
Brockhoff D, Zitzler E (2009) Objective reduction in evolutionary multiobjective optimization: theory and applications. Evol Comput 17(2):135–166
Li M, Yang S, Liu X (2016) Pareto or non-Pareto: Bi-criterion evolution in multi-objective optimization. IEEE Trans Evol Comput 20(5):645–665
Saxena D, Duro J, Tiwari A, Deb K, Zhang Q (2013) Objective reduction in many-objective optimization: linear and nonlinear algorithms. IEEE Trans Evol Comput 17(1):77–99
Ishibuchi H, Masuda H, Nojima Y (2016) Pareto fronts of many-objective degenerate test problems. IEEE Trans Evol Comput 20(5):807–813
Jain H, Deb K (2014) An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: handling constraints and extending to an adaptive approach. IEEE Trans Evol Comput 18(4):602–622
Deb K, Saxena DK (2006) Searching for Pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems. In: IEEE Congress on Evolutionary Computation (CEC), pp 3353–3360
Li M, Grosan C, Yang S, Liu X, Yao X (2017) “Multi-line distance minimization: A visualized many-objective test problem suite. IEEE Trans Evol Comput (in press)