A behavioral test battery for mouse models of Angelman syndrome: a powerful tool for testing drugs and novel Ube3a mutants

Molecular Autism - Tập 9 - Trang 1-19 - 2018
Monica Sonzogni1,2, Ilse Wallaard1,2, Sara Silva Santos1,2, Jenina Kingma1,2, Dorine du Mee1,2, Geeske M. van Woerden1,2, Ype Elgersma1,2
1Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
2ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, Netherlands

Tóm tắt

Angelman syndrome (AS) is a neurodevelopmental disorder caused by mutations affecting UBE3A function. AS is characterized by intellectual disability, impaired motor coordination, epilepsy, and behavioral abnormalities including autism spectrum disorder features. The development of treatments for AS heavily relies on the ability to test the efficacy of drugs in mouse models that show reliable, and preferably clinically relevant, phenotypes. We previously described a number of behavioral paradigms that assess phenotypes in the domains of motor performance, repetitive behavior, anxiety, and seizure susceptibility. Here, we set out to evaluate the robustness of these phenotypes when tested in a standardized test battery. We then used this behavioral test battery to assess the efficacy of minocycline and levodopa, which were recently tested in clinical trials of AS. We combined data of eight independent experiments involving 111 Ube3a mice and 120 wild-type littermate control mice. Using a meta-analysis, we determined the statistical power of the subtests and the effect of putative confounding factors, such as the effect of sex and of animal weight on rotarod performance. We further assessed the robustness of these phenotypes by comparing Ube3a mutants in different genetic backgrounds and by comparing the behavioral phenotypes of independently derived Ube3a-mutant lines. In addition, we investigated if the test battery allowed re-testing the same animals, which would allow a within-subject testing design. We find that the test battery is robust across different Ube3a-mutant lines, but confirm and extend earlier studies that several phenotypes are very sensitive to genetic background. We further found that the audiogenic seizure susceptibility phenotype is fully reversible upon pharmacological treatment and highly suitable for dose-finding studies. In agreement with the clinical trial results, we found that minocycline and levodopa treatment of Ube3a mice did not show any sign of improved performance in our test battery. Our study provides a useful tool for preclinical drug testing to identify treatments for Angelman syndrome. Since the phenotypes are observed in several independently derived Ube3a lines, the test battery can also be employed to investigate the effect of specific Ube3a mutations on these phenotypes.

Tài liệu tham khảo

Petersen MB, Brøndum-Nielsen K, Hansen LK, Wulff K. Clinical, cytogenetic, and molecular diagnosis of Angelman syndrome: estimated prevalence rate in a Danish county. Am J Med Genet. 1995;60:261–2. Kishino T, Lalande M, Wagstaff J. UBE3A/E6-AP mutations cause Angelman syndrome. Nat Genet. 1997;15:70–3. Williams CA, Beaudet AL, Clayton-Smith J, Knoll JH, Kyllerman M, Laan LA, et al. Angelman syndrome 2005: updated consensus for diagnostic criteria. Am J Med Genet Part A. 2006;140A:413–8. Tan W-HH, Bird LM. Angelman syndrome: current and emerging therapies in 2016. Am J Med Genet Part C Semin Med Genet. 2016;401:384–401. Katz DM, Berger-Sweeney JE, Eubanks JH, Justice MJ, Neul JL, Pozzo-Miller L, et al. Preclinical research in Rett syndrome: setting the foundation for translational success. Dis Model Mech. 2012;5:733–45. Gentile JK, Tan W-H, Horowitz LT, Bacino CA, Skinner SA, Barbieri-Welge R, et al. A neurodevelopmental survey of Angelman syndrome with genotype-phenotype correlations. J Dev Behav Pediatr. 2010;31:592–601. Jiang YH, Armstrong D, Albrecht U, Atkins CM, Noebels JL, Eichele G, et al. Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. Neuron. 1998;21:799–811. Huang HS, Burns AJ, Nonneman RJ, Baker LK, Riddick NV, Nikolova VD, et al. Behavioral deficits in an Angelman syndrome model: effects of genetic background and age. Behav Brain Res. 2013;243:79–90. Born HA, Dao AT, Levine AT, Lee WL, Mehta NM, Mehra S, et al. Strain-dependence of the Angelman syndrome phenotypes in Ube3a maternal deficiency mice. Sci Rep. 2017;7:1–15. Allensworth M, Saha A, Reiter LT, Heck DH. Normal social seeking behavior, hypoactivity and reduced exploratory range in a mouse model of Angelman syndrome. BMC Genet. 2011;12:7. Jiang YH, Pan Y, Zhu L, Landa L, Yoo J, Spencer C, et al. Altered ultrasonic vocalization and impaired learning and memory in Angelman syndrome mouse model with a large maternal deletion from Ube3a to Gabrb3. PLoS ONE 5(8):e12278. https://doi.org/10.1371/journal.pone.0012278. Miura K, Kishino T, Li E, Webber H, Dikkes P, Holmes GL, et al. Neurobehavioral and electroencephalographic abnormalities in Ube3a maternal-deficient mice. Neurobiol Dis. 2002;9:149–59. Silva-santos S, Van Woerden GM, Bruinsma CF, Mientjes E, Jolfaei MA, Distel B, et al. Ube3a reinstatement identifies distinct developmental windows in a murine Angelman syndrome model. J Clin Invest. 2015;125Silva-s:1–8. Garrido-Mesa N, Zarzuelo A, Gálvez J. Minocycline: far beyond an antibiotic. Br J Pharmacol. 2013;169:337–52. Elewa HF, Hilali H, Hess DC, Machado LS, Fagan SC. Minocycline for short-term neuroprotection. Pharmacotherapy. 2006;26:515–21. https://doi.org/10.1592/phco.26.4.515. Harbord M. Levodopa responsive Parkinsonism in adults with Angelman syndrome. J Clin Neurosci. 2001;8:421–2. Brown AM, Deutch AY, Colbran RJ. Dopamine depletion alters phosphorylation of striatal proteins in a model of Parkinsonism. Eur J Neurosci. 2005;22:247–56. Van Woerden GM, Harris KD, Hojjati MR, Gustin RM, Qiu S, Freire RDA, et al. Rescue of neurological deficits in a mouse model for Angelman syndrome by reduction of alphaCaMKII inhibitory phosphorylation. Nat Neurosci. 2007;10:280–2. Weeber EJ, Jiang Y-H, Elgersma Y, Varga AW, Carrasquillo Y, Brown SE, et al. Derangements of hippocampal calcium/calmodulin-dependent protein kinase II in a mouse model for Angelman mental retardation syndrome. J Neurosci. 2003;23:2634–44. doi:23/7/2634 Grieco JC, Ciarlone SL, Gieron-Korthals M, Schoenberg MR, Smith AG, Philpot RM, et al. An open-label pilot trial of minocycline in children as a treatment for Angelman syndrome. BMC Neurol. 2014;14:232. Tan WH, Bird LM, Sadhwani A, Barbieri-Welge RL, Skinner SA, Horowitz LT, et al. A randomized controlled trial of levodopa in patients with Angelman syndrome. Am J Med Genet Part A. 2018;176A:1099–107. Ruiz-Antorán B, Sancho López A, Cazorla-Calleja R, López-Pájaro LF, Leiva Á, Iglesias-Escalera G, et al. A randomized placebo controlled clinical trial to evaluate the efficacy and safety of minocycline in patients with Angelman syndrome (A-MANECE study). Orphanet J Rare Dis. 2018;13:144. https://doi.org/10.1186/s13023-018-0891-6. Wang T, van Woerden GM, Elgersma Y, Borst JGG. Enhanced transmission at the calyx of Held synapse in a mouse model for Angelman syndrome. Front Cell Neurosci. 2018;11:1–19. Grieco J. Minocycline treatment and the necessity to develop a novel outcome measure for children with Angelman syndrome. Grad Theses Diss. 2015; http://scholarcommons.usf.edu/etd/5693. Andes D, Craig WA. Animal model pharmacokinetics and pharmacodynamics: a critical review. Int J Antimicrob Agents. 2002;19:261–8. Bilousova TV, Dansie L, Ngo M, Aye J, Charles JR, Ethell DW, et al. Minocycline promotes dendritic spine maturation and improves behavioural performance in the fragile X mouse model. J Med Genet. 2009;46:94–102. Lee CZ, Yao JS, Huang Y, Zhai W, Liu W, Guglielmo BJ, et al. Dose–response effect of tetracyclines on cerebral matrix metalloproteinase-9 after vascular endothelial growth factor hyperstimulation. J Cereb Blood Flow Metab. 2006;26:1157–64. Lin S, Wei X, Bales KR, Paul ABC, Ma Z, Yan G, et al. Minocycline blocks bilirubin neurotoxicity and prevents hyperbilirubinemia-induced cerebellar hypoplasia in the Gunn rat. Eur J Neurosci. 2005;22:21–7. Luzi P, Abraham RM, Rafi MA, Curtis M, Hooper DC, Wenger DA. Effects of treatments on inflammatory and apoptotic markers in the CNS of mice with globoid cell leukodystrophy. Brain Res. 2009;1300:146–58. Van Zutphen LFM, Baumans V, Beynen AC. Principles of laboratory animal science: a contribution to the humane use and care of animals and to the quality of experimental results. Amsterdam: Elsevier B.V.; 2001. Florek-Luszczki M, Wlaz A, Luszczki JJ. Interactions of levetiracetam with carbamazepine, phenytoin, topiramate and vigabatrin in the mouse 6 Hz psychomotor seizure model – a type II isobolographic analysis. Eur J Pharmacol. 2014;723:410–8. Kiel C, Faul F, Erdfelder E, Lang AG, Buchner A. G* Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39:175–91. Pelc K, Cheron G, Dan B. Behavior and neuropsychiatric manifestations in Angelman syndrome. Neuropsychiatric Dis Treat. 2008;4(3):577–84. Kedia S, Chattarji S. Marble burying as a test of the delayed anxiogenic effects of acute immobilisation stress in mice. J Neurosci Methods. 2014;233:150–4. Angoa-Pérez M, Kane MJ, Briggs DI, Francescutti DM, Kuhn DM. Marble burying and nestlet shredding as tests of repetitive, compulsive-like lehaviors in mice. J Vis Exp. 2013:1–7. Jirkof P. Burrowing and nest building behavior as indicators of well-being in mice. J Neurosci Methods. 2014;234:139–46. https://doi.org/10.1016/j.jneumeth.2014.02.001. Can A, Dao DT, Arad M, Terrillion CE, Piantadosi SC, Gould TD. The mouse forced swim test. J Vis Exp. 2011:4–8. Meng L, Person RE, Huang W, Zhu PJ, Costa-Mattioli M, Beaudet AL. Truncation of Ube3a-ATS unsilences paternal Ube3a and ameliorates behavioral defects in the Angelman syndrome mouse model. PLoS Genet. 2013;9(12):e1004039. https://doi.org/10.1371/journal.pgen.1004039. Fiumara A, Pittalà A, Cocuzza M, Sorge G. Epilepsy in patients with Angelman syndrome. Ital J Pediatr. 2010;36:31. Weber P. Levetiracetam in nonconvulsive status epilepticus in a child with Angelman syndrome. J Child Neurol. 2010;25:393–6. Thibert RL, Conant KD, Braun EK, Bruno P, Said RR, Nespeca MP, et al. Epilepsy in Angelman syndrome: a questionnaire-based assessment of the natural history and current treatment options. Epilepsia. 2009;50:2369–76. Fagan SC, Edwards DJ, Borlongan CV, Xu L, Arora A, Feuerstein G, et al. Optimal delivery of minocycline to the brain: implication for human studies of acute neuroprotection. Exp Neurol. 2004;186:248–51. Rotschafer SE, Trujillo MS, Dansie LE, Ethell IM, Razak KA. Minocycline treatment reverses ultrasonic vocalization production deficit in a mouse model of Fragile X syndrome. Brain Res. 2012;1439:7–14. van der Vaart T, Overwater IE, Oostenbrink R, Moll HA, Elgersma Y. Treatment of cognitive deficits in genetic disorders. JAMA Neurol. 2015;72:1052. Daily JL, Nash K, Jinwal U, Golde T, Rogers J, Peters MM, et al. Adeno-associated virus-mediated rescue of the cognitive defects in a mouse model for Angelman syndrome. PLoS One. 2011;6:e27221. Hethorn WR, Ciarlone SL, Filonova I, Rogers JT, Aguirre D, Ramirez RA, et al. Reelin supplementation recovers synaptic plasticity and cognitive deficits in a mouse model for Angelman syndrome. Eur J Neurosci. 2015;41:1372–80. Baudry M, Kramar E, Xu X, Zadran H, Moreno S, Lynch G, et al. Ampakines promote spine actin polymerization, long-term potentiation, and learning in a mouse model of Angelman syndrome. Neurobiol Dis. 2012;47:210–5. Sun J, Zhu G, Liu Y, Standley S, Ji A, Tunuguntla R, et al. UBE3A regulates synaptic plasticity and learning and memory by controlling SK2 channel endocytosis. Cell Rep. 2015;12:449–61. https://doi.org/10.1016/j.celrep.2015.06.023. Sun J, Liu Y, Tran J, O’Neal P, Baudry M, Bi X. mTORC1–S6K1 inhibition or mTORC2 activation improves hippocampal synaptic plasticity and learning in Angelman syndrome mice. Cell Mol Life Sci. 2016;73:4303–14. Kovács AD, Pearce DA. Location- and sex-specific differences in weight and motor coordination in two commonly used mouse strains. Sci Rep. 2013;3:1–7. Cook MN, Bolivar VJ, McFadyen MP, Flaherty L. Behavioral differences among 129 substrains: implications for knockout and transgenic mice. Behav Neurosci. 2002;116:600–11. McFadyen MP, Kusek G, Bolivar VJ, Flaherty L. Differences among eight inbred strains of mice in motor ability and motor learning on a rotorod. Genes, Brain Behav. 2003;2:214–9. Abaied L, Trabelsi M, Chaabouni M, Kharrat M, Kraoua L, M’rad R, et al. A novel UBE3A truncating mutation in large Tunisian Angelman syndrome pedigree. Am J Med Genet Part A. 2010;152A:141–6. Tsilidis KK, Panagiotou OA, Sena ES, Aretouli E, Evangelou E, Howells DW, et al. Evaluation of excess significance bias in animal studies of neurological diseases. PLoS Biol. 2013;11:e1001609. Mineur YS, Crusio WE. Behavioral effects of ventilated micro-environment housing in three inbred mouse strains. Physiol Behav. 2009;97:334–40. Richter SH, Garner JP, Würbel H. Environmental standardization: cure or cause of poor reproducibility in animal experiments? Nat Methods. 2009;6:257–61. Flint J, Corley R, DeFries J, Fulker D, Gray J, Miller S, et al. A simple genetic basis for a complex psychological trait in laboratory mice. Science (80- ). 1995;269:1432–5. Mandillo S, Tucci V, Hölter SM, Meziane H, Al BM, Kallnik M, et al. Reliability, robustness, and reproducibility in mouse behavioral phenotyping: a cross-laboratory study. Physiol Genomics. 2008;34:243–55.