A basic introduction into microbial fuel cells and microbial electrocatalysis

Uwe Schröder1
1Institute of Environmental and Sustainable Chemistry, Technische Universität Braunschweig, Braunschweig, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Inzelt G (2014) Crossing the bridge between thermodynamics and electrochemistry. From the potential of the cell reaction to the electrode potential. ChemTexts 1:2. https://doi.org/10.1007/s40828-014-0002-9

Weast R, Astle M, Beyer W (1984) CRC handbook of chemistry and physics, Internet V. CRC Press, Boca Raton

Hamann CH, Hamnett A, Vielstich W (2007) Electrochemistry. Wiley, Hoboken

Bard A, Inzelt G, Scholz F (2012) Electrochemical dictionary, 2nd edn. Springer, Berlin Heidelberg

Bagotsky VS (2012) Fuel cells: problems and solutions, 2nd ed. Wiley, Hoboken

Kim BH, Gadd GM (2008) Bacterial physiology and metabolism. Cambridge University Press, Cambridge

Schröder U, Harnisch F (2017) Life Electric—Nature as a Blueprint for the Development of Microbial Electrochemical Technologies. Joule 1:. https://doi.org/10.1016/j.joule.2017.07.010

Bullen RA, Arnot TC, Lakeman JB, Walsh FC (2006) Biofuel cells and their development. Biosens Bioelectron 21:2015–2045

Cooney MJ, Svoboda V, Lau C et al (2008) Enzyme catalysed biofuel cells. Energy Environ Sci 1:320–337

Harnisch F, Wirth S, Schröder U (2009) Effects of substrate and metabolite crossover on the cathodic oxygen reduction reaction in microbial fuel cells: platinum vs. iron(II) phthalocyanine based electrodes. Electrochem Commun 11:2253–2256

Zebda A, Alcaraz J-P, Vadgama P et al (2018) Challenges for successful implantation of biofuel cells. Bioelectrochemistry 124:57–72. https://doi.org/10.1016/j.bioelechem.2018.05.011

Macazo FC, Minteer SD (2017) Enzyme cascades in biofuel cells. Curr Opin Electrochem 5:114–120. https://doi.org/10.1016/j.coelec.2017.07.010

Schröder U, Harnisch F, Angenent LT (2015) Microbial electrochemistry and technology: terminology and classification. Energy Environ Sci 8:513–519. https://doi.org/10.1039/C4EE03359K

Lovley D (2006) Taming electricigens. Scientist 20:46

Torres CI, Marcus AK, Lee H-S et al (2010) A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. FEMS Microbiol Rev 34:3–17. https://doi.org/10.1111/j.1574-6976.2009.00191.x

Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7:375–381. https://doi.org/10.1038/nrmicro2113

Park DH, Zeikus JG (2000) Electricity generation in microbial fuel cell using neutral red as an electronophore. Appl Environm Microbiol 66:1292–1297

Chong GW, Karbelkar AA, El-Naggar MY (2018) Nature’s conductors: what can microbial multi-heme cytochromes teach us about electron transport and biological energy conversion? Curr Opin Chem Biol 47:7–17. https://doi.org/10.1016/j.cbpa.2018.06.007

Kracke F, Vassilev I, Krömer JO (2015) Microbial electron transport and energy conservation—the foundation for optimizing bioelectrochemical systems. Front Microbiol. https://doi.org/10.3389/fmicb.2015.00575

Kumar A, Hsu LH-H, Kavanagh P et al (2017) The ins and outs of microorganism–electrode electron transfer reactions. Nat Rev Chem 1:24. https://doi.org/10.1038/s41570-017-0024

Schröder U (2007) Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys Chem Chem Phys 9:2619–2629

Malvankar NS, Lovley DR (2012) Microbial nanowires: a new paradigm for biological electron transfer and bioelectronics. ChemSusChem 5:1039–1046. https://doi.org/10.1002/cssc.201100733

MYERS CR, NEALSON KH (1988) Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240:1319–1321. https://doi.org/10.1126/science.240.4857.1319

Caccavo F Jr, Lonergan DJ, Lovley DR et al (1994) Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl Environ Microbiol 60:3752–3759

Koch C, Harnisch F (2016) Is there a specific ecological niche for electroactive microorganisms? Chem Electro Chem 3:1282–1295

Gescher JG, Kappler AK (2012) Microbial Metal Respiration. Springer Berlin Heidelberg, Berlin

Schröder U, Harnisch F, Angenent LT (2015) Microbial electrochemistry and technology: terminology and classification. Energy Environ Sci. https://doi.org/10.1039/c4ee03359k

Schröder U, Harnisch F (2010) Electrochemical losses defining BES performance. In: Rabaey K, Angenent L, Schröder U, Keller J (eds) Bioelectrochemical systems: from extracellular electron transfer to biotechnological application. IWA Publishing, London

Korth B, Maskow T, Picioreanu C, Harnisch F (2016) The microbial electrochemical Peltier heat: an energetic burden and engineering chance for primary microbial electrochemical technologies. Energy Environ Sci 9:2539–2544. https://doi.org/10.1039/c6ee01428c

Baudler A, Riedl S, Schröder U (2014) Long-term performance of primary and secondary electroactive biofilms using layered corrugated carbon electrodes. Front Energy Res 2:1–6. https://doi.org/10.3389/fenrg.2014.00030

Cercado B, Byrne N, Bertrand M et al (2013) Garden compost inoculum leads to microbial bioanodes with potential-independent characteristics. Bioresour Technol 134:276–284. https://doi.org/10.1016/j.biortech.2013.01.123

Liu Y, Harnisch F, Fricke K et al (2008) Improvement of the anodic bioelectrocatalytic activity of mixed culture biofilms by a simple consecutive electrochemical selection procedure. Biosens Bioelectron 24:1012–1017

Riedl S, Brown RK, Klöckner S et al (2017) Successive conditioning in complex artificial wastewater increases the performance of electrochemically active biofilms treating real wastewater. Chem Electro Chem. https://doi.org/10.1002/celc.201700929

Ketep SF, Bergel A, Bertrand M et al (2013) Sampling location of the inoculum is crucial in designing anodes for microbial fuel cells. Biochem Eng J 73:12–16

Harnisch F, Schröder U (2010) From MFC to MXC: chemical and biological cathodes and their potential for microbial bioelectrochemical systems. Chem Soc Rev 39:4433–4448

Rozendal RA, Harnisch F, Jeremiasse AW, Schröder U (2009) Cathodes in BES. In: Rabaey K, Angenent L, Schröder U, Keller J (eds) Bio-electrochemical systems: from extracellular electron transfer to biotechnological application. International Water Association

Logan B, Call D, Merrill M, Cheng S (2010) Cathodes for microbial electrolysis cells and microbial fuel cells. 40 pp., Cont.-in-part of U.S. Ser. No. 177,962

Yuan H, Hou Y, Abu-Reesh IM et al (2016) Oxygen reduction reaction catalysts used in microbial fuel cells for energy-efficient wastewater treatment: a review. Mater Horizons 3:382–401. https://doi.org/10.1039/c6mh00093b

Bajracharya S, ElMekawy A, Srikanth S, Pant D (2015) Cathodes for microbial fuel cells. In: Microbial electrochemical and fuel cells: fundamentals and applications. Elsevier Inc., pp 179–213

Read ST, Dutta P, Bond PL et al (2010) Initial development and structure of biofilms on microbial fuel cell anodes. BMC Microbiol 10:98

Logan BE (2008) Microbial fuel cells. Wiley, New York

Rabaey K, Angenent L, Schröder U, Keller J (2010) Bioelectrochemical systems: from extracellular electron transfer to biotechnological application. Integr Environ Technol Ser

Das D (2017) Microbial fuel cell: a bioelectrochemical system that converts waste to watts. Springer, Berlin

Rabaey K, Rozendal RA (2010) Microbial electrosynthesis—revisiting the electrical route for microbial production. Nat Rev Microbiol 8:706–716

Krieg T, Sydow A, Schröder U et al (2014) Reactor concepts for bioelectrochemical syntheses and energy conversion. Trends Biotechnol 32:. https://doi.org/10.1016/j.tibtech.2014.10.004

Qiao Y, Bao S-J, Li CM (2010) Electrocatalysis in microbial fuel cells—from electrode material to direct electrochemistry. Energy Environ Sci 3:544–553. https://doi.org/10.1039/b923503e

Wei J, Liang P, Huang X (2011) Recent progress in electrodes for microbial fuel cells. Bioresour Technol 102:9335–9344. https://doi.org/10.1016/j.biortech.2011.07.019

Zhou M, Chi M, Luo J et al (2011) An overview of electrode materials in microbial fuel cells. J Power Sources 196:4427–4435. https://doi.org/10.1016/j.jpowsour.2011.01.012

Han TH, Sawant SY, Cho MH (2017) Development of suitable anode materials for microbial fuel cells. In: Microbial fuel cell: a bioelectrochemical system that converts waste to watts. Springer, Berlin, pp 101–124