A basic introduction into microbial fuel cells and microbial electrocatalysis
Tóm tắt
Từ khóa
Tài liệu tham khảo
Inzelt G (2014) Crossing the bridge between thermodynamics and electrochemistry. From the potential of the cell reaction to the electrode potential. ChemTexts 1:2. https://doi.org/10.1007/s40828-014-0002-9
Weast R, Astle M, Beyer W (1984) CRC handbook of chemistry and physics, Internet V. CRC Press, Boca Raton
Hamann CH, Hamnett A, Vielstich W (2007) Electrochemistry. Wiley, Hoboken
Schröder U, Harnisch F (2017) Life Electric—Nature as a Blueprint for the Development of Microbial Electrochemical Technologies. Joule 1:. https://doi.org/10.1016/j.joule.2017.07.010
Bullen RA, Arnot TC, Lakeman JB, Walsh FC (2006) Biofuel cells and their development. Biosens Bioelectron 21:2015–2045
Cooney MJ, Svoboda V, Lau C et al (2008) Enzyme catalysed biofuel cells. Energy Environ Sci 1:320–337
Harnisch F, Wirth S, Schröder U (2009) Effects of substrate and metabolite crossover on the cathodic oxygen reduction reaction in microbial fuel cells: platinum vs. iron(II) phthalocyanine based electrodes. Electrochem Commun 11:2253–2256
Zebda A, Alcaraz J-P, Vadgama P et al (2018) Challenges for successful implantation of biofuel cells. Bioelectrochemistry 124:57–72. https://doi.org/10.1016/j.bioelechem.2018.05.011
Macazo FC, Minteer SD (2017) Enzyme cascades in biofuel cells. Curr Opin Electrochem 5:114–120. https://doi.org/10.1016/j.coelec.2017.07.010
Schröder U, Harnisch F, Angenent LT (2015) Microbial electrochemistry and technology: terminology and classification. Energy Environ Sci 8:513–519. https://doi.org/10.1039/C4EE03359K
Lovley D (2006) Taming electricigens. Scientist 20:46
Torres CI, Marcus AK, Lee H-S et al (2010) A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. FEMS Microbiol Rev 34:3–17. https://doi.org/10.1111/j.1574-6976.2009.00191.x
Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7:375–381. https://doi.org/10.1038/nrmicro2113
Park DH, Zeikus JG (2000) Electricity generation in microbial fuel cell using neutral red as an electronophore. Appl Environm Microbiol 66:1292–1297
Chong GW, Karbelkar AA, El-Naggar MY (2018) Nature’s conductors: what can microbial multi-heme cytochromes teach us about electron transport and biological energy conversion? Curr Opin Chem Biol 47:7–17. https://doi.org/10.1016/j.cbpa.2018.06.007
Kracke F, Vassilev I, Krömer JO (2015) Microbial electron transport and energy conservation—the foundation for optimizing bioelectrochemical systems. Front Microbiol. https://doi.org/10.3389/fmicb.2015.00575
Kumar A, Hsu LH-H, Kavanagh P et al (2017) The ins and outs of microorganism–electrode electron transfer reactions. Nat Rev Chem 1:24. https://doi.org/10.1038/s41570-017-0024
Schröder U (2007) Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys Chem Chem Phys 9:2619–2629
Malvankar NS, Lovley DR (2012) Microbial nanowires: a new paradigm for biological electron transfer and bioelectronics. ChemSusChem 5:1039–1046. https://doi.org/10.1002/cssc.201100733
MYERS CR, NEALSON KH (1988) Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240:1319–1321. https://doi.org/10.1126/science.240.4857.1319
Caccavo F Jr, Lonergan DJ, Lovley DR et al (1994) Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl Environ Microbiol 60:3752–3759
Koch C, Harnisch F (2016) Is there a specific ecological niche for electroactive microorganisms? Chem Electro Chem 3:1282–1295
Schröder U, Harnisch F, Angenent LT (2015) Microbial electrochemistry and technology: terminology and classification. Energy Environ Sci. https://doi.org/10.1039/c4ee03359k
Schröder U, Harnisch F (2010) Electrochemical losses defining BES performance. In: Rabaey K, Angenent L, Schröder U, Keller J (eds) Bioelectrochemical systems: from extracellular electron transfer to biotechnological application. IWA Publishing, London
Korth B, Maskow T, Picioreanu C, Harnisch F (2016) The microbial electrochemical Peltier heat: an energetic burden and engineering chance for primary microbial electrochemical technologies. Energy Environ Sci 9:2539–2544. https://doi.org/10.1039/c6ee01428c
Baudler A, Riedl S, Schröder U (2014) Long-term performance of primary and secondary electroactive biofilms using layered corrugated carbon electrodes. Front Energy Res 2:1–6. https://doi.org/10.3389/fenrg.2014.00030
Cercado B, Byrne N, Bertrand M et al (2013) Garden compost inoculum leads to microbial bioanodes with potential-independent characteristics. Bioresour Technol 134:276–284. https://doi.org/10.1016/j.biortech.2013.01.123
Liu Y, Harnisch F, Fricke K et al (2008) Improvement of the anodic bioelectrocatalytic activity of mixed culture biofilms by a simple consecutive electrochemical selection procedure. Biosens Bioelectron 24:1012–1017
Riedl S, Brown RK, Klöckner S et al (2017) Successive conditioning in complex artificial wastewater increases the performance of electrochemically active biofilms treating real wastewater. Chem Electro Chem. https://doi.org/10.1002/celc.201700929
Ketep SF, Bergel A, Bertrand M et al (2013) Sampling location of the inoculum is crucial in designing anodes for microbial fuel cells. Biochem Eng J 73:12–16
Harnisch F, Schröder U (2010) From MFC to MXC: chemical and biological cathodes and their potential for microbial bioelectrochemical systems. Chem Soc Rev 39:4433–4448
Rozendal RA, Harnisch F, Jeremiasse AW, Schröder U (2009) Cathodes in BES. In: Rabaey K, Angenent L, Schröder U, Keller J (eds) Bio-electrochemical systems: from extracellular electron transfer to biotechnological application. International Water Association
Logan B, Call D, Merrill M, Cheng S (2010) Cathodes for microbial electrolysis cells and microbial fuel cells. 40 pp., Cont.-in-part of U.S. Ser. No. 177,962
Yuan H, Hou Y, Abu-Reesh IM et al (2016) Oxygen reduction reaction catalysts used in microbial fuel cells for energy-efficient wastewater treatment: a review. Mater Horizons 3:382–401. https://doi.org/10.1039/c6mh00093b
Bajracharya S, ElMekawy A, Srikanth S, Pant D (2015) Cathodes for microbial fuel cells. In: Microbial electrochemical and fuel cells: fundamentals and applications. Elsevier Inc., pp 179–213
Read ST, Dutta P, Bond PL et al (2010) Initial development and structure of biofilms on microbial fuel cell anodes. BMC Microbiol 10:98
Logan BE (2008) Microbial fuel cells. Wiley, New York
Rabaey K, Angenent L, Schröder U, Keller J (2010) Bioelectrochemical systems: from extracellular electron transfer to biotechnological application. Integr Environ Technol Ser
Das D (2017) Microbial fuel cell: a bioelectrochemical system that converts waste to watts. Springer, Berlin
Rabaey K, Rozendal RA (2010) Microbial electrosynthesis—revisiting the electrical route for microbial production. Nat Rev Microbiol 8:706–716
Krieg T, Sydow A, Schröder U et al (2014) Reactor concepts for bioelectrochemical syntheses and energy conversion. Trends Biotechnol 32:. https://doi.org/10.1016/j.tibtech.2014.10.004
Qiao Y, Bao S-J, Li CM (2010) Electrocatalysis in microbial fuel cells—from electrode material to direct electrochemistry. Energy Environ Sci 3:544–553. https://doi.org/10.1039/b923503e
Wei J, Liang P, Huang X (2011) Recent progress in electrodes for microbial fuel cells. Bioresour Technol 102:9335–9344. https://doi.org/10.1016/j.biortech.2011.07.019
Zhou M, Chi M, Luo J et al (2011) An overview of electrode materials in microbial fuel cells. J Power Sources 196:4427–4435. https://doi.org/10.1016/j.jpowsour.2011.01.012
Han TH, Sawant SY, Cho MH (2017) Development of suitable anode materials for microbial fuel cells. In: Microbial fuel cell: a bioelectrochemical system that converts waste to watts. Springer, Berlin, pp 101–124
