Công thức vi khuẩn với các chủng bản địa như một giải pháp thay thế phân bón hóa học cho cây cà chua

Patrizia Paganin1, Clelia Isca1, Flavia Tasso1, Tommaso Calandrelli1, Giada Migliore1, Pier Andrea Marras2, Daniela Medas2, Elisabetta Dore2, Giovanni De Giudici2, Anna Rosa Sprocati1, Chiara Alisi1
1Department of Sustainability (SSPT), ENEA, Via Anguillarese 301, 00123, Rome, Italy
2Department of Chemical and Geological Sciences, University of Cagliari, 09042 Monserrato, Italy

Tóm tắt

Tóm tắtNăng suất cà chua toàn cầu đang bị đe dọa bởi các yếu tố stress sinh học và phi sinh học. Để hỗ trợ và đảm bảo năng suất đủ cho cây cà chua, các phương pháp canh tác đã dựa trên việc sử dụng phân bón hóa học với tác động tiêu cực đến môi trường. Nghiên cứu này trình bày một chiến lược cải thiện chức năng sinh học đơn giản và hiệu quả, phù hợp với các giống khác nhau, để thay thế việc bón phân hóa học. Một công thức vi sinh vật được điều chỉnh, bao gồm tám chủng bản địa (bao gồm các chi Delftia, Pseudomonas, Paenarthrobacter, Phyllobacterium, Bacillus, và Acinetobacter) đã được phát triển như một loại phân bón sinh học. Các chủng đã được chọn từ đất bản địa vì các chức năng thúc đẩy sự phát triển của cây (PGP), và được kết hợp theo cấu trúc thành phần hệ sinh thái hữu cơ của cộng đồng PGP gốc. Tác động của việc bón phân sinh học so với phân bón hóa học đã được kiểm tra trong ba thử nghiệm thực địa liên tiếp tại nhà kính của công ty, với các giống cà chua khác nhau (Camone, Oblungo, Cherry). Khi bón phân sinh học chỉ được áp dụng hai lần trong suốt chu kỳ sống của giống Camone, năng suất cà chua đã giảm đáng kể (0.8 so với 2.1 kg mỗi cây, p = 0.0003). Tuy nhiên, việc cấy ghép hàng tháng trong quá trình phát triển cây đã dẫn đến năng suất trái tương đương với năng suất đạt được bằng phân hóa học (khoảng 1.5 kg mỗi cây cho giống Oblungo, và khoảng 2 kg mỗi cây cho giống Cherry, p = 0.9999). Việc bón phân sinh học không làm ảnh hưởng đáng kể đến chiều cao cây; chỉ trong giai đoạn phát triển cuối cùng của giống Cherry, một chiều cao trung bình của cây có sự khác biệt đáng kể hơn (p < 0.0001) được quan sát với phân hóa học. Kết quả cho thấy rằng một công thức vi khuẩn dựa trên kiến thức và việc cấy ghép hàng tháng trong quá trình phát triển cây có thể là một chiến lược bón phân sinh học thành công. Những phát hiện này có thể mở ra con đường hướng tới việc sản xuất cà chua bền vững hơn, khi các phương pháp nông nghiệp đang trở nên ngày càng quan trọng, phù hợp với Chương trình nghị sự 2030 và chiến lược "Từ nông trại đến bàn ăn" của EU. Tóm tắt hình ảnh

Từ khóa


Tài liệu tham khảo

Adesemoye AO, Torbert HA, Kloepper JW (2009) Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol 58:921–929. https://doi.org/10.1007/s00248-009-9531-y

Ahmad M, Nadeem SM, Naveed M, Zahir ZA (2016) Potassium-solubilizing bacteria and their application in agriculture. Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 293–313

Angulo J, Martínez-Salgado MM, Ortega-Blu R, Fincheira P (2020) Combined effects of chemical fertilization and microbial inoculant on nutrient use efficiency and soil quality indicators. Scientia Agropecuaria 11:375–380. https://doi.org/10.17268/sci.agropecu.2020.03.09

ANICAV Italy’s National Industrial Association of Vegetable Food Preserves (2021) News: “Pomodoro da industria: campagna 2021 da record”. https://anicav.it/2021/11/16/campagna2021. Accessed 23/01/2023

Ashfaq M, Hassan HM, Ghazali AHA, Ahmad M (2020) Halotolerant potassium solubilizing plant growth promoting rhizobacteria may improve potassium availability under saline conditions. Environ Monit Assess 192:697. https://doi.org/10.1007/s10661-020-08655-x

Barca S, Serri R, Rizzo R, et al (2009) ISPRA Servizio Geologico d’Italia, Regione Autonoma della Sardegna: note Illustrative della Carta Geologica d’Italia alla scala 1:50.000. Foglio 565 “Capoterra”

Bevivino A, Paganin P, Bacci G et al (2014) Soil bacterial community response to differences in agricultural management along with seasonal changes in a Mediterranean region. PLoS One. https://doi.org/10.1371/journal.pone.0105515

Bhowmik A, Singh Kukal S, Saha D et al (2019) Potential indicators of soil health degradation in different land use-based ecosystems in the Shiwaliks of Northwestern India. Sustainability 11:3908. https://doi.org/10.3390/su11143908

Bona E, Todeschini V, Cantamessa S et al (2018) Combined bacterial and mycorrhizal inocula improve tomato quality at reduced fertilization. Sci Hortic 234:160–165. https://doi.org/10.1016/j.scienta.2018.02.026

François-Xavier Branthôme (2022) Consumption: 2021 in the wake of 2020. In: 14TH WPTC Congress. https://www.tomatonews.com/en/consumption-2021-in-the-wake-of-2020_2_1618.html. Accessed 23/01/2023.

Caloiero T, Guagliardi I (2021) Climate change assessment: seasonal and annual temperature analysis trends in the Sardinia region (Italy). Arab J Geosci 14:2149. https://doi.org/10.1007/s12517-021-08527-9

Cardinale M, Ratering S, Suarez C et al (2015) Paradox of plant growth promotion potential of rhizobacteria and their actual promotion effect on growth of barley (Hordeum vulgare L.) under salt stress. Microbiol Res 181:22–32. https://doi.org/10.1016/j.micres.2015.08.002

Čechura L, Kroupová ZŽ, Samoggia A (2021) Drivers of productivity change in the italian tomato food value chain. Agriculture (switzerland) 11:996. https://doi.org/10.3390/agriculture11100996

Committee on Biological Agents - ABAS (2020) TRBA 466: Classification of prokaryotes (bacteria and archaea) into risk groups. http://regelwerke.vbg.de/vbg_trba/trba466/trba466_0_.html. Accessed 23/01/2023.

Compant S, Samad A, Faist H, Sessitsch A (2019) A review on the plant microbiome: ecology, functions, and emerging trends in microbial application. J Adv Res 19:29–37

Cordero I, Balaguer L, Rincón A, Pueyo JJ (2018) Inoculation of tomato plants with selected PGPR represents a feasible alternative to chemical fertilization under salt stress. J Plant Nutr Soil Sci 181:694–703. https://doi.org/10.1002/jpln.201700480

Dejonghe W, Boon N, Seghers D, Top EM, Verstraete W (2001) Bioaugmentation of soils by increasing microbial richness: missing links. Environ Microbiol 3(10):649–657. https://doi.org/10.1046/j.1462-2920.2001.00236.x

del Amor FM, Cuadra-Crespo P (2012) Plant growth-promoting bacteria as a tool to improve salinity tolerance in sweet pepper. Funct Plant Biol 39:82–90. https://doi.org/10.1071/FP11173

Dobereiner J, Marriel IE, Nery M (1976) Ecological distribution of Spirillum lipoferum Beijerinck. Can J Microbiol 22:1464–1473

Etesami H, Emami S, Alikhani HA (2017) Potassium solubilizing bacteria (KSB): Mechanisms, promotion of plant growth, and future prospects-a review. J Soil Sci Plant Nutr 17:897–911. https://doi.org/10.4067/S0718-95162017000400005

Flores-Félix JD, Velázquez E, Martínez-Molina E et al (2021) Connecting the lab and the field: genome analysis of phyllobacterium and rhizobium strains and field performance on two vegetable crops. Agronomy 11:1124. https://doi.org/10.3390/agronomy11061124

Gamalero E, Berta G, Massa N et al (2008) Synergistic interactions between the ACC deaminase-producing bacterium Pseudomonas putida UW4 and the AM fungus Gigaspora rosea positively affect cucumber plant growth. FEMS Microbiol Ecol 64:459–467. https://doi.org/10.1111/j.1574-6941.2008.00485.x

Garland JL (1996) Analytical approaches to the characterization of samples of microbial communities using patterns of potential C source utilization. Soil Biol Biochem 28:213–221. https://doi.org/10.1016/0038-0717(95)00112-3

Giuliani MM, Gatta G, Cappelli G et al (2019) Identifying the most promising agronomic adaptation strategies for the tomato growing systems in Southern Italy via simulation modeling. European J Agron 111:125937. https://doi.org/10.1016/j.eja.2019.125937

Gupta R, Singal R, Shankar A et al (1994) Short communication a modified plate assay for screening phosphate solubilizing microorganisms. J Gen App Microbiol 40:255–260. https://doi.org/10.2323/jgam.40.255

He Y, Pantigoso HA, Wu Z, Vivanco JM (2019) Co-inoculation of Bacillus sp. and Pseudomonas putida at different development stages acts as a biostimulant to promote growth, yield and nutrient uptake of tomato. J Appl Microbiol 127:196–207. https://doi.org/10.1111/jam.14273

Heuvelink E (1999) Evaluation of a dynamic simulation model for tomato crop growth and development. Ann Bot 83(4):413–422

Hu X, Chen J, Guo J (2006) Two phosphate- and potassium-solubilizing bacteria isolated from Tianmu Mountain, Zhejiang, China. World J Microbiol Biotechnol 22:983–990. https://doi.org/10.1007/s11274-006-9144-2

Kaminsky LM, Trexler Rv, Malik RJ et al (2019) The inherent conflicts in developing soil microbial inoculants. Trends Biotechnol 37:140–151. https://doi.org/10.1016/J.TIBTECH.2018.11.011

Kumar S, Stecher G, Li M et al (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

Kumar BP, Reddy NS, Sparjanbabu DS (2020) Role of microbial communities to mitigate climate change in agriculture. Int J Curr Microbiol Appl Sci 9:1477–1483. https://doi.org/10.20546/ijcmas.2020.910.176

Kumar S, Diksha Sindhu SS, Kumar R (2022) Biofertilizers: An ecofriendly technology for nutrient recycling and environmental sustainability. Curr Res Microb Sci 3:100094. https://doi.org/10.1016/j.crmicr.2021.100094

Lobo CB, Juárez Tomás MS, Viruel E et al (2019) Development of low-cost formulations of plant growth-promoting bacteria to be used as inoculants in beneficial agricultural technologies. Microbiol Res 219:12–25

Mahmud K, Missaoui A, Lee K et al (2021) Rhizosphere microbiome manipulation for sustainable crop production. Curr Plant Biol 27:100210. https://doi.org/10.1016/J.CPB.2021.100210

Manasa M, Ravinder P, Gopalakrishnan S et al (2021) Co-inoculation of bacillus spp. for growth promotion and iron fortification in sorghum. Sustainability 13:12091. https://doi.org/10.3390/su132112091

Manfredi P, Cassinari C, Gatti M, Trevisan M (2019) Growth and yield response of tomato (Solarium lycopersicum L.) to soil reconstitution technology. Agrochimica 63:73–83. https://doi.org/10.12871/00021857201916

Mannino G, Nerva L, Gritli T et al (2020) Effects of different microbial inocula on tomato tolerance to water deficit. Agronomy 10:170. https://doi.org/10.3390/agronomy10020170

Marras PA, Lima DCA, Soares PMM et al (2021) Future precipitation in a Mediterranean island and streamflow changes for a small basin using EURO-CORDEX regional climate simulations and the SWAT model. J Hydrol (Amst) 603:127025. https://doi.org/10.1016/j.jhydrol.2021.127025

Massa D, Bonetti A, Cacini S, Faraloni C, Prisa D, Tuccio L, Petruccelli R (2019) Soilless tomato grown under nutritional stress increases green biomass but not yield or quality in presence of biochar as growing medium. Horticult Environ Biotechnol 60:871–881. https://doi.org/10.1007/s13580-019-00169-x

Menéndez E, Pérez-Yépez J, Hernández M et al (2020) Plant growth promotion abilities of phylogenetically diverse mesorhizobium strains: effect in the root colonization and development of tomato seedlings. Microorganisms 8:412. https://doi.org/10.3390/microorganisms8030412

Mirza BS, Rodrigues JLM (2012) Development of a direct isolation procedure for free-living diazotrophs under controlled hypoxic conditions. Appl Environ Microbiol 78:5542–5549. https://doi.org/10.1128/AEM.00714-12

Mitter EK, Tosi M, Obregón D et al (2021) Rethinking crop nutrition in times of modern microbiology: innovative biofertilizer technologies. Front Sustain Food Syst 5:606815. https://doi.org/10.3389/fsufs.2021.606815

Mondal S (2021) Impact of climate change on soil fertility. In: Choudhary DK, Mishra A, Varma A (eds) Climate change and the microbiome: sustenance of the ecosphere. Springer International Publishing, Cham, pp 551–569

Morra L, Cozzolino E, Salluzzo A et al (2021) Plant growth, yields and fruit quality of processing tomato (Solanum lycopersicon L.) as affected by the combination of biodegradable mulching and digestate. Agronomy 11:100. https://doi.org/10.3390/agronomy11010100

Mühling M, Woolven-Allen J, Murrell JC, Joint I (2008) Improved group-specific PCR primers for denaturing gradient gel electrophoresis analysis of the genetic diversity of complex microbial communities. ISME J 2:379–392. https://doi.org/10.1038/ismej.2007.97

Oleńska E, Małek W, Wójcik M et al (2020) Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: a methodical review. Sci Total Environ 743:140682. https://doi.org/10.1016/j.scitotenv.2020.140682

Ortiz N, Armada E, Duque E et al (2015) Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: effectiveness of autochthonous or allochthonous strains. J Plant Physiol 174:87–96. https://doi.org/10.1016/J.JPLPH.2014.08.019

Patten CL, Glick BR (2002) Role of pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801. https://doi.org/10.1128/AEM.68.8.3795-3801.2002

Pérez-Miranda S, Cabirol N, George-Téllez R et al (2007) O-CAS, a fast and universal method for siderophore detection. J Microbiol Methods 70:127–131. https://doi.org/10.1016/J.MIMET.2007.03.023

Pérez-Rodriguez MM, Piccoli P, Anzuay MS et al (2020) Native bacteria isolated from roots and rhizosphere of Solanum lycopersicum L. increase tomato seedling growth under a reduced fertilization regime. Sci Rep 10:15642. https://doi.org/10.1038/s41598-020-72507-4

Potts PJ, Webb PC (1992) X-ray fluorescence spectrometry. J Geochem Explor 44:251–296. https://doi.org/10.1016/0375-6742(92)90052-A

Riva V, Mapelli F, Dragonetti G et al (2021) Bacterial inoculants mitigating water scarcity in tomato: the importance of long-term in vivo experiments. Front Microbiol 12:675552. https://doi.org/10.3389/fmicb.2021.675552

Sah S, Krishnani S, Singh R (2021) Pseudomonas mediated nutritional and growth promotional activities for sustainable food security. Curr Res Microb Sci 2:100084. https://doi.org/10.1016/j.crmicr.2021.100084

Saxena AK, Kumar M, Chakdar H et al (2020) Bacillus species in soil as a natural resource for plant health and nutrition. J Appl Microbiol 128:1583–1594. https://doi.org/10.1111/jam.14506

Schmidt T, Schlegel HG (1989) Nickel and cobalt resistance of various bacteria isolated from soil and highly polluted domestic and industrial wastes. FEMS Microbiol Lett 62:315–328. https://doi.org/10.1111/j.1574-6968.1989.tb03386.x

Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56. https://doi.org/10.1016/0003-2697(87)90612-9

Setiawati TC, Mutmainnah L (2016) Solubilization of potassium containing mineral by microorganisms from sugarcane rhizosphere. Agric Sci Procedia 9:108–117. https://doi.org/10.1016/j.aaspro.2016.02.134

Shilev S (2020) Plant-growth-promoting bacteria mitigating soil salinity stress in plants. Appl Sci 10:1–20. https://doi.org/10.3390/app10207326

Sprocati AR, Alisi C, Tasso F et al (2014) Bioprospecting at former mining sites across Europe: microbial and functional diversity in soils. Environ Sci Pollut Res 21:6824–6835. https://doi.org/10.1007/s11356-013-1907-3

Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 101:11030–11035

Tosi M, Mitter EK, Gaiero J, Dunfield K (2020) It takes three to tango: The importance of microbes, host plant, and soil management to elucidate manipulation strategies for the plant microbiome. Can J Microbiol 66:413–433. https://doi.org/10.1139/cjm-2020-0085

Vieira FCS, Nahas E (2005) Comparison of microbial numbers in soils by using various culture media and temperatures. Microbiol Res 160:197–202. https://doi.org/10.1016/j.micres.2005.01.004

Wu Y, Yan S, Fan J et al (2022) Combined effects of irrigation level and fertilization practice on yield, economic benefit and water-nitrogen use efficiency of drip-irrigated greenhouse tomato. Agric Water Manag 262:107401. https://doi.org/10.1016/j.agwat.2021.107401

Ye L, Zhao X, Bao E et al (2020) Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality. Sci Rep 10:177. https://doi.org/10.1038/s41598-019-56954-2

Zhang C, Kong F (2014) Isolation and identification of potassium-solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Appl Soil Ecol 82:18–25. https://doi.org/10.1016/j.apsoil.2014.05.002