A Weldability Study of Al–Cu–Li 2198 Alloy

Springer Science and Business Media LLC - Tập 57 Số 11-12 - Trang 1134-1141 - 2014
V. Calogero1, Girolamo Costanza2, S. Missori2, A. Sili1, Maria Elisa Tata2
1Univ. of Messina
2University of Rome Tor Vergata

Tóm tắt

Từ khóa


Tài liệu tham khảo

R. T. Holt, A. K. Koul, L. Zhao, et al., “Lightweight materials for aircraft applications,” Mater. Charact., 35, No. 1, 41–67 (1995).

V. Wagner, “Evoluzione delle leghe di alluminio per aeronautica dopo le due guerre mondiali,” Metall. Ital., No. 6, 9–21 (2005).

T. Warner, “Recently-developed aluminium solutions for aerospace applications,” Mater. Sci. Forum, 519/521, 1271–1278 (2006).

K. S. Kumar, S. A. Brown, and J. R. Pickens, “Microstructural evolution during aging of an Al–Cu–Li–Ag–Mg–Zr alloy,” Acta Mater., 44, No. 5, 1899–1915 (1996).

S. P. Ringer and K. Hono, “Microstructural evolution and age hardening in aluminium alloys: atom probe field – ion microscopy and trasmission electron microscopy studies,” Mater. Charact., 44, 101–131 (2000).

J. Ehrström and T. Warner, “Metallurgical design of alloys for aerospace structures,” Mater. Sci. Forum, 331/337, 5–16 (2000).

A. Heinz, A. Haszler, C. Keidel, et al., “Recent development in aluminium alloys for aerospace applications,” Mater. Sci. Eng. A, 280, No. 1, 102–107 (2000).

L. Bonaccorsi, G. Costanza, S. Missori, and M. E. Tata, “Mechanical and metallurgical characterization of 8090 Al–Li alloy welded joints,” Metallurgist, 56, No. 1–2, 75–84 (2012).

B. Irving, “Welding the four most popular aluminium alloys,” Weld. Int., 73, No. 2, 51–55 (1994).

A. Kostrivas and J. C. Lippold, “Weldability of Li-bearing aluminium alloys,” Int. Mater. Rev., 44, No. 6, 217–237 (1999).

G. D. Janaki Ram, T. K. Mitra, M. K. Raju, and S. Sundaresan, “Use of inoculants to refine weld solidification structure and improve weldability in type 2090 Al–Li alloy,” Mater. Eng., A276, 48–57 (2000).

G. O. Rading, M. Shamsuzzoha, and J. T. Berry, “A model for HAZ hardness profiles in Al–Li–X alloys: application to the Al–Li–Cu alloy 2095,” Weld. J., 77, No. 9, 382s–387s (1998).

S. Missori and A. Sili, “Mechanical and microstructural properties of 8090 Al–Li alloy welded joints,” Metall. Sci. Technol., 20, No. 2, 22–26 (2002).

P. Vilaca and W. Thomas, “Friction stir weldig technology,” in: Structural Connections for Lightweight Metallic Structures, P. Moreira, L. da Silva, and P. de Castro (eds.), Advanced Structured Materials Ser., Springer-Verlag, Berlin, Heidelberg (2012), Vol. 8, pp. 85–124

P. Cavaliere, E. Cerri, and P. Leo, “Evoluzione meccanica e microstrutturale di una lega di alluminio 7075 saldata per friction stir welding,” Metall. Ital., No. 6, 33–39 (2005).

J. Adamowski and M. Szkodo, “Friction Stir Welding (FSW) of aluminium alloy AW6082-T6,” J. Achieve. Mater. Manuf. Eng., 20, No. 1–2, 403–406 (2007).

K. Mroczka and A. Pietras, “FSW characterizations of 6082 aluminium alloys sheets,” Arch. Mater. Sci. Eng., 40, No. 2, 104–109 (2009).

A. Donato, P. Gondi, R. Montanari, et al., “A remotely operated FIMEC apparatus for the mechanical characterization of neutron irradiated materials,” J. Nucl. Mater., 258–263, 446–451 (1998).

C. Bitondo, U. Prisco, A. Squillace, et al., “Friction stir welding of AA2198-T3 butt joints for aeronautical applications,” Int. J. Mater. Form, 3, Suppl. 1, 1079–1082 (2010).

B. Decreus, A. Deschamps, and P. Donnadieu, “Understanding the mechanical properties of 2198 Al–Li–Cu alloy in relation with the intragranular and inter-granular precipitate microstructure,” J. Physics: Conf. Ser., 240, 012096 (2010).

Li Cuia et al., “Effect of Nd:YAG laser welding on microstructure and hardness of an Al–Li based alloy,” Mater. Charact., 71, 95–102 (2012).