A Voronoi diagram approach for detecting defects in 3D printed fiber-reinforced polymers from microscope images

Springer Science and Business Media LLC - Tập 9 - Trang 41-56 - 2022
Xiang Li1, Sara McMains1
1University of California, Berkeley, Berkeley, USA

Tóm tắt

Fiber-reinforced polymer (FRP) composites are increasingly popular due to their superior strength to weight ratio. In contrast to significant recent advances in automating the FRP manufacturing process via 3D printing, quality inspection and defect detection remain largely manual and inefficient. In this paper, we propose a new approach to automatically detect, from microscope images, one of the major defects in 3D printed FRP parts: fiber-deficient areas (or equivalently, resin-rich areas). From cross-sectional microscope images, we detect the locations and sizes of fibers, construct their Voronoi diagram, and employ α-shape theory to determine fiber-deficient areas. Our Voronoi diagram and α-shape construction algorithms are specialized to exploit typical characteristics of 3D printed FRP parts, giving significant efficiency gains. Our algorithms robustly handle real-world inputs containing hundreds of thousands of fiber cross-sections, whether in general or non-general position.

Tài liệu tham khảo

Yang, C. C.; Tian, X. Y.; Liu, T. F.; Cao, Y.; Li, D. C. 3D printing for continuous fiber reinforced thermoplastic composites: Mechanism and performance. Rapid Prototyping Journal Vol. 23, No. 1, 209–215, 2017. Van der Klift, F.; Koga, Y.; Todoroki, A.; Ueda, M.; Hirano, Y.; Matsuzaki, R. 3D printing of continuous carbon fibre reinforced thermo-plastic (CFRTP) tensile test specimens. Open Journal of Composite Materials Vol. 6, No. 1, 18–27, 2016. Zhang, J.; Fox, B. L.; Gao, D.; Stevenson, A. W. Inspection of drop-weight impact damage in woven CFRP laminates fabricated by different processes. Journal of Composite Materials Vol. 43, No. 19, 1939–1946, 2009. Parandoush, P.; Zhou, C.; Lin, D. 3D printing of ultrahigh strength continuous carbon fiber composites. Advanced Engineering Materials Vol. 21, No. 2, 1800622, 2019. Sugiyama, K.; Matsuzaki, R.; Malakhov, A. V.; Polilov, A. N.; Ueda, M.; Todoroki, A.; Hirano, Y. 3D printing of optimized composites with variable fiber volume fraction and stiffness using continuous fiber. Composites Science and Technology Vol. 186, 107905, 2020. Harish, S.; Michael, D. P.; Bensely, A.; Lal, D. M.; Rajadurai, A. Mechanical property evaluation of natural fiber coir composite. Materials Characterization Vol. 60, No. 1, 44–49, 2009. Ghayoor, H.; Marsden, C. C.; Hoa, S. V.; Melro, A. R. Numerical analysis of resin-rich areas and their effects on failure initiation of composites. Composites Part A: Applied Science and Manufacturing Vol. 117, 125–133, 2019. Hayes, B. S.; Gammon, L. M. Optical Microscopy of Fiber-Reinforced Composites. ASM International, 2010. Edelsbrunner, H.; Kirkpatrick, D.; Seidel, R. On the shape of a set of points in the plane. IEEE Transactions on Information Theory Vol. 29, No. 4, 551–559, 1983. Cantwell, W. J.; Morton, J. The significance of damage and defects and their detection in composite materials: A review. The Journal of Strain Analysis for Engineering Design Vol. 27, No. 1, 29–42, 1992. Schneider, C. A.; Rasband, W. S.; Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nature Methods Vol. 9, No. 7, 671–675, 2012. Gommer, F.; Endruweit, A.; Long, A. C. Quantification of micro-scale variability in fibre bundles. Composites Part A: Applied Science and Manufacturing Vol. 87, 131–137, 2016. Yang, H.; Colton, J. S. Quantitative image processing analysis of composite materials. Polymer Composites Vol. 15, No. 1, 46–54, 1994. Li, X.; Shonkwiler, S.; McMains, S. Fiber recognition in composite materials. In: Proceedings of the IEEE International Conference on Image Processing, 2623–2627, 2021. Edelsbrunner, H.; Mücke, E. P. Three-dimensional alpha shapes. ACM Transactions on Graphics Vol. 13, No. 1, 43–72, 1994. Kim, D. S.; Cho, Y.; Sugihara, K.; Ryu, J.; Kim, D. Three-dimensional beta-shapes and beta-complexes via quasi-triangulation. Computer-Aided Design Vol. 42, No. 10, 911–929, 2010. Park, C. H.; Lee, S. Y.; Hwang, D. S.; Shin, D. W.; Cho, D. H.; Lee, K. H.; Kim, T.-W.; Kim, T.-W.; Lee, M.; Kim, D.-S.; et al. Nanocrack-regulated self-humidifying membranes. Nature Vol. 532, No. 7600, 480–483, 2016. Choi, S.; Ryu, J.; Lee, M.; Cha, J.; Kim, H.; Song, C.; Kim, D.-S. Support-free hollowing with spheroids and efficient 3D printing utilizing circular printing motions based on Voronoi diagrams. Additive Manufacturing Vol. 35, 101254, 2020. Kim, D. S.; Kim, D.; Sugihara, K. Voronoi diagram of a circle set from Voronoi diagram of a point set: I. Topology. Computer Aided Geometric Design Vol. 18, No. 6, 541–562, 2001. Kim, D. S.; Kim, D.; Sugihara, K. Voronoi diagram of a circle set from Voronoi diagram of a point set: II. Geometry. Computer Aided Geometric Design Vol. 18, No. 6, 563–585, 2001. Jin, L.; Kim, D.; Mu, L. S.; Kim, D. S.; Hu, S. M. A sweepline algorithm for Euclidean Voronoi diagram of circles. Computer-Aided Design Vol. 38, No. 3, 260–272, 2006. Lee, M.; Sugihara, K.; Kim, D. S. Topology-oriented incremental algorithm for the robust construction of the Voronoi diagrams of disks. ACM Transactions on Mathematical Software Vol. 43, No. 2, Article No. 14, 2016. Kim, D.; Kim, D. S. Region-expansion for the Voronoi diagram of 3D spheres. Computer-Aided Design Vol. 38, No. 5, 417–430, 2006. Hu, Z. Y.; Li, X.; Krishnamurthy, A.; Hanniel, I.; McMains, S. Voronoi cells of non-general position spheres using the GPU. Computer-Aided Design and Applications Vol. 14, No. 5, 572–581, 2017. Li, X.; Krishnamurthy, A.; Hanniel, I.; McMains, S. Edge topology construction of Voronoi diagrams of spheres in non-general position. Computers & Graphics Vol. 82, 332–342, 2019. Emiris, I. Z.; Tzoumas, G. M. Exact and efficient evaluation of the InCircle predicate for parametric ellipses and smooth convex objects. Computer-Aided Design Vol. 40, No. 6, 691–700, 2008. Emiris, I. Z.; Tsigaridas, E. P.; Tzoumas, G. M. Exact Voronoi diagram of smooth convex pseudo-circles: General predicates, and implementation for ellipses. Computer Aided Geometric Design Vol. 30, No. 8, 760–777, 2013. Shewchuk, J. R. Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator. In: Applied Computational Geometry Towards Geometric Engineering. Lecture Notes in Computer Science, Vol. 1148. Lin, M. C., Manocha, D. Eds. Springer Berlin Heidelberg, 203–222, 1996. Kim, J. K.; Cho, Y.; Kim, D.; Kim, D. S. Voronoi diagrams, quasi-triangulations, and beta-complexes for disks in R2: The theory and implementation in BetaConcept. Journal of Computational Design and Engineering Vol. 1, No. 2, 79–87, 2014. Zheng, X. Y.; Palffy-Muhoray, P. Distance of closest approach of two arbitrary hard ellipses in two dimensions. Physical Review E Vol. 75, No. 6, 061709, 2007. Ohya, T.; Iri, M.; Murota, K. Improvements of the incremental method for the Voronoi diagram with computational comparison of various algorithms. Journal of the Operations Research Society of Japan Vol. 27, No. 4, 306–337, 1984. Sugihara, K. Approximation of generalized Voronoi diagrams by ordinary Voronoi diagrams. CVGIP: Graphical Models and Image Processing Vol. 55, No. 6, 522–531, 1993. Lee, M.; Fang, Q.; Cho, Y.; Ryu, J.; Liu, L. G.; Kim, D. S. Support-free hollowing for 3D printing via Voronoi diagram of ellipses. Computer-Aided Design Vol. 101, 23–36, 2018.