A Volumetric Penrose Inequality for Conformally Flat Manifolds

Annales Henri Poincaré - Tập 12 - Trang 67-76 - 2010
Fernando Schwartz1
1Department of Mathematics, University of Tennessee, Knoxville, USA

Tóm tắt

We consider asymptotically flat Riemannian manifolds with non-negative scalar curvature that are conformal to $${\mathbb{R}^{n}{\setminus} \Omega, n\ge 3}$$ , and so that their boundary is a minimal hypersurface. (Here, $${\Omega\subset \mathbb{R}^{n}}$$ is open bounded with smooth mean-convex boundary.) We prove that the ADM mass of any such manifold is bounded below by $${\frac{1}{2}\left(V/\beta_{n}\right)^{(n-2)/n}}$$ , where V is the Euclidean volume of Ω and β n is the volume of the Euclidean unit n-ball. This gives a partial proof to a conjecture of Bray and Iga (Commun. Anal. Geom. 10:999–1016, 2002). Surprisingly, we do not require the boundary to be outermost.

Từ khóa


Tài liệu tham khảo

Arnowitt R., Deser S., Misner C.W.: Coordinate invariance and energy expressions in general relativity. Phys. Rev. 122(2), 997–1006 (1961)

Bartnik R.: The mass of an asymptotically flat manifold. Commun. Pure Appl. Math. 39(5), 661–693 (1986)

Bray H.L.: Proof of the Riemannian Penrose inequality using the positive mass theorem. J. Differ. Geom. 59(2), 177–267 (2001)

Bray H.L., Iga K.: Superharmonic functions in R n and the Penrose inequality in general relativity. Commun. Anal. Geom. 10(5), 999–1016 (2002)

Bray H.L., Lee D.A.: On the Riemannian Penrose inequality in dimensions less than eight. Duke Math. J. 148(1), 81–106 (2009)

Bray H.L., Miao P.: On the capacity of surfaces in manifolds with nonnegative scalar curvature. Invent. Math. 172(3), 459–475 (2008)

Bray H.L., Neves A.: Classification of prime 3-manifolds with Yamabe invariant greater than \({\mathbb{RP}^3}\). Ann. of Math. 159(2), 407–424 (2004)

Chruściel, P.: Boundary conditions at spatial infinity from a Hamiltonian point of view. In: Topological properties and global structure of space-time (Erice, 1985), NATO Adv. Sci. Inst. Ser. B Phys. 138, Plenum, New York, 49–59 (1986)

Hildén K.: Symmetrization of functions in Sobolev spaces and the isoperimetric inequality. Manuscripta Math. 18(3), 215–235 (1976)

Huisken G., Ilmanen T.: The inverse mean curvature flow and the Riemannian Penrose inequality. J. Differ. Geom. 59(3), 353–437 (2001)

Lawson H.B.Jr, Michelsohn M.-L.: Spin geometry. Princeton Mathematical Series, vol. 38. Princeton University Press, N. J (1989)

Parker T., Taubes C.H.: On Witten’s proof of the positive energy theorem. Commun. Math. Phys. 84(2), 223–238 (1982)

Pólya G., Szegö G.: Isoperimetric Inequalities in Mathematical Physics. Annals of Mathematics Studies, vol. 27. Princeton University Press, Princeton (1951)

Schoen R., Yau S.-T.: On the proof of the positive mass conjecture in general relativity. Commun. Math. Phys. 65(1), 45–76 (1979)

Schwartz F.: Existence of outermost apparent horizons with product of spheres topology. Commun. Anal. Geom. 16(4), 799–817 (2008)

Talenti G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 110(4), 353–372 (1976)

Witten E.: A new proof of the positive energy theorem. Commun. Math. Phys. 80(3), 381–402 (1981)