A Viable Varying Speed of Light Model in the RW Metric
Tóm tắt
Từ khóa
Tài liệu tham khảo
Hinshaw, G., et al.: Nine-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological parameter results. Astrophys. J. Suppl. Ser. 208, 20 (2013). https://doi.org/10.1088/0067-0049/208/2/19.
Aghanim, N.: Planck 2018 results. I. Overview and the cosmological legacy of planck. Astron. Astrophys. (2020). https://doi.org/10.1051/0004-6361/201833880
Guzzo, L., Bel, J., Bianchi, D., Carbone, C., Granett, B.R., Hawken, A.J., Mohammad, F.G., Pezzotta, A., Rota, S., Zennaro, M.: Measuring the universe with galaxy redshift surveys (2018)
Cawthon, R., et al.: [DES], Dark energy survey year 3 results: calibration of lens sample redshift distributions using clustering redshifts with BOSS/eBOSS. Mon. Not. Roy. Astron. Soc. 513, 5517 (2022). https://doi.org/10.1093/mnras/stac1160
Robertson, H.P.: On the foundations of relativistic cosmology. Proc. Natl. Acad. Sci. 15(11), 822–829 (1929). https://doi.org/10.1073/pnas.15.11.822
Robertson, H.P.: Relativistic cosmology. Rev. Mod. Phys. 5, 62 (1933). https://doi.org/10.1103/RevModPhys.5.62
Walker, A.G., Milne, E.A.: On the formal comparison of Milne’s kinematical system with the systems of general relativity. Mon. Not. R. Astron. Soc. 95, 263 (1935). https://doi.org/10.1093/mnras/95.3.263
Walker, A.G.: On Milne’s theory of world-structure. Proc. London Math. Soc. Ser. 42(1), 90–127 (1937). https://doi.org/10.1112/plms/s2-42.1.90
Morin, D.: Introduction to Classical Mechanics. Cambridge University Press (2007)
H. Weyl, Phys. Z. 24, 230 (1923) (English translation: H. Weyl, “Republication of: On the general relativity theory” Gen. Rel. Grav. 41, 1661 (2009))
Islam, J.N.: An Introduction to Mathematical Cosmology. Cambridge University Press, Cambridge (2001)
Narlikar, J.V.: An Introduction to Cosmology. Cambridge University Press, Cambridge (2002)
Hobson, M.P., Efstathiou, G.P., Lasenby, A.N.: General Relativity: An Introduction for Physicists. Cambridge University Press, Cambridge (2006)
Choquet-Bruhat, Y.: Introduction to General Relativity, Black Holes and Cosmology. Oxford University Press, Oxford (2015)
Roos, M.: Introduction to Cosmology. Wiley, Hoboken (2015)
Guidry, M.: Modern General Relativity: Black Holes, Gravitational Waves, and Cosmology. Cambridge University Press, Cambridge (2019)
Ferrari, V., Gualtieri, L., Pani, P.: General Relativity and its Applications: Black Holes, Compact Stars and Gravitational Waves. CRC Press, Boca Raton (2021)
Schutz, J.: Independent Axioms for Minkowski Spacetime. Addison Wesley Longman Limited, Boston (1997)
Lee, S.: The minimally extended varying speed of light (meVSL). JCAP 08, 054 (2021). https://doi.org/10.1088/1475-7516/2021/08/054.
Barrow, J.D.: Cosmologies with varying light speed. Phy. Rev. D 59, 043515 (1988). https://doi.org/10.1103/PhysRevD.59.043515
Einstein, A.: ber den Einflu der Schwerkraft auf die Ausbreitung des Lichtes. Annalen. der. Physik 35, 898–906 (1911). https://doi.org/10.1002/andp.19113401005
Dicke, R.: Gravitation without a principle of equivalence. Rev. Mod. Phys. 29, 363–376 (1957). https://doi.org/10.1103/RevModPhys.29.363
Petit, J.P.: An interpretation of cosmological model with variable light velocity. Mod. Phys. Lett. A 3, 1527–1532 (1988). https://doi.org/10.1142/S0217732388001823
Petit, J.P.: Cosmological model with variable light velocity: the interpretation of red shifts. Mod. Phys. Lett. A 3, 1733–1744 (1988). https://doi.org/10.1142/S0217732388002099
Petit, J.P., Viton, M.: Gauge cosmological model with variable light velocity. Comparizon with QSO observational data. Mod. Phys. Lett. A 4, 2201–2210 (1989). https://doi.org/10.1142/S0217732389002471
Moffat, J.W.: Superluminary universe: a possible solution to the initial value problem in cosmology. Int. J. Mod. Phys. D 2, 351–366 (1993). https://doi.org/10.1142/S0218271893000246.
Petit, J.P.: Twin universe cosmology Astrophys. Sp. Science 226, 273 (1995). https://doi.org/10.1007/bf00627375
Albrecht, A., Magueijo, J.: A time varying speed of light as a solution to cosmological puzzles. Phys. Rev. D 59, 043516 (1999). https://doi.org/10.1103/PhysRevD.59.043516
Barrow, J.D., Magueijo, J.: Solutions to the quasi-flatness and quasi lambda problems. Phys. Lett. B 447, 246 (1999). https://doi.org/10.1016/S0370-2693(99)00008-8
Clayton, M.A., Moffat, J.W.: Dynamical mechanism for varying light velocity as a solution to cosmological problems. Phys. Lett. B 460, 263–270 (1999). https://doi.org/10.1016/S0370-2693(99)00774-1
Barrow, J.D., Magueijo, J.: Solving the flatness and quasiflatness problems in Brans-Dicke cosmologies with a varying light speed. Class. Quant. Grav. 16, 1435–1454 (1999). https://doi.org/10.1088/0264-9381/16/4/030
Clayton, M.A., Moffat, J.W.: Scalar tensor gravity theory for dynamical light velocity. Phys. Lett. B 477, 269–275 (2000). https://doi.org/10.1016/S0370-2693(00)00192-1
Brandenberger, R. H., Magueijo, J.: “Imaginative cosmology,” [arXiv:hep-ph/9912247 [hep-ph]]
Bassett, B.A., Liberati, S., Molina-Paris, C., Visser, M.: Geometrodynamics of variable speed of light cosmologies. Phys. Rev. D 62, 103518 (2000). https://doi.org/10.1103/PhysRevD.62.103518
Gopakumar, P., Vijayagovindan, G.V.: Solutions to cosmological problems with energy conservation and varying c, G and Lambda. Mod. Phys. Lett. A 16, 957–962 (2001). https://doi.org/10.1142/S0217732301004042
Magueijo, J.: Covariant and locally Lorentz invariant varying speed of light theories. Phys. Rev. D 62, 103521 (2000). https://doi.org/10.1103/PhysRevD.62.103521
Magueijo, J.: Stars and black holes in varying speed of light theories. Phys. Rev. D 63, 043502 (2001). https://doi.org/10.1103/PhysRevD.63.043502
Magueijo, J.: New varying speed of light theories. Rept. Prog. Phys. 66, 2025 (2003). https://doi.org/10.1088/0034-4885/66/11/R04
Magueijo, J., Moffat, J.W.: Comments on ‘note on varying speed of light theories’. Gen. Rel. Grav. 40, 1797–1806 (2008). https://doi.org/10.1007/s10714-007-0568-2
Petit, J. P., d’Agostini, G.: “Bigravity: A Bimetric model of the Universe with variable constants, inluding VSL (variable speed of light),” [arXiv:0803.1362 [math-ph]]
Roshan, M., Nouri, M., Shojai, F.: Cosmological solutions of time varying speed of light theories. Phys. Lett. B 672, 197–202 (2009). https://doi.org/10.1016/j.physletb.2009.01.042
Sanejouand, Y.H.: About some possible empirical evidences in favor of a cosmological time variation of the speed of light. Europhys. Lett. 88, 59002 (2009)
Nassif, C., Amaro de Faria, A.C.: Variation of the speed of light with temperature of the expanding universe. Phys. Rev. D 86, 027703 (2012). https://doi.org/10.1103/PhysRevD.86.027703
Moffat, J.W.: Variable speed of light cosmology, primordial fluctuations and gravitational waves. Eur. Phys. J. C 76(3), 130 (2016). https://doi.org/10.1140/epjc/s10052-016-3971-6
Ravanpak, A., Farajollahi, H., Fadakar, G.F.: Normal DGP in varying speed of light cosmology. Res. Astron. Astrophys. 17(3), 26 (2017). https://doi.org/10.1088/1674-4527/17/3/26
Costa, R., Cuzinatto, R.R., Ferreira, E.M.G., Franzmann, G.: Covariant c-flation: a variational approach. Int. J. Mod. Phys. D 28(09), 1950119 (2019). https://doi.org/10.1142/S0218271819501190
Nassif, C., Silva, F.A.: Variation of the speed of light and a minimum speed in the scenario of an inflationary universe with accelerated expansion. Phys. Dark Universe 22, 127 (2018)
Lee, S.: “Constraining minimally extended varying speed of light by cosmological chronometers,” [arXiv:2301.06947 [astro-ph.CO]]
Leibundgut, B.: Time dilation in the light curve of the distant type ia supernovae sn 1995k. Astrophys. J. Lett. 466, L21 (1996). https://doi.org/10.1086/310164
Riess, A.G., et al.: [Supernova Search Team], Time dilation from spectral feature age measurements of type ia supernovae’’. Astron. J. 114, 722 (1997). https://doi.org/10.1086/118506
Foley, R.J., Filippenko, A.V., Leonard, D.C., Riess, A.G., Nugent, P., Perlmutter, S.: A definitive measurement of time dilation in the spectral evolution of the moderate-redshift Type Ia supernova 1997ex. Astrophys. J. Lett. 626, L11–L14 (2005). https://doi.org/10.1086/431241
Blondin, S., Tonry, J.L.: Determining the type, redshift, and age of a supernova spectrum. Astrophys. J. 666, 1024–1047 (2007). https://doi.org/10.1086/520494
Blondin, S., Davis, T.M., Krisciunas, K., Schmidt, B.P., Sollerman, J., Wood-Vasey, W.M., Becker, A.C., Challis, P., Clocchiatti, A., Damke, G., et al.: Time dilation in type Ia supernova spectra at high redshift. Astrophys. J. 682, 724–736 (2008). https://doi.org/10.1086/589568
Norris, J.P., Nemiroff, R.J., Scargle, J.D., Kouveliotou, C., Fishman, G.J., Meegan, C.A., Paciesas, W.S., Bonnell, J.T.: Detection of signature consistent with cosmological time dilation in gamma-ray bursts. Astrophys. J. 424, 540 (1994). https://doi.org/10.1086/173912
Wijers, R.A.M.J., Paczynski, B.: On the nature of gamma-ray burst time dilations. Astrophys. J. Lett. 437, L107 (1994). https://doi.org/10.1086/187694
Band, D.: Cosmological time dilation in gamma-ray bursts? Astrophys. J. Lett. 432, L23 (1994). https://doi.org/10.1086/187502
Meszaros, A., Meszaros, P.: Cosmological evolution and luminosity function effects on number counts, redshift and time dilation of bursting sources. Astrophys. J. 466, 29 (1996). https://doi.org/10.1086/177491
Lee, T.T., Petrosian, V.: Time dilation of batse gamma-ray bursts. Astrophys. J. 474, 37 (1997). https://doi.org/10.1086/303458
Chang, H.Y.: Fourier analysis of gamma-ray burst light curves: searching for direct signature of cosmological time dilation. Astrophys. J. Lett. 557, L85 (2001). https://doi.org/10.1086/323331
Crawford, D. F.: “No evidence of time dilation in gamma-ray burst data,” [arXiv:0901.4169 [astro-ph.CO]]
Zhang, F.W., Fan, Y.Z., Shao, L., Wei, D.M.: Cosmological time dilation in durations of swift long gamma-ray bursts. Astrophys. J. Lett. 778, L11 (2013). https://doi.org/10.1088/2041-8205/778/1/L11
Singh, A., Desai, S.: Search for cosmological time dilation from gamma-ray bursts – a 2021 status update. JCAP 02(02), 010 (2022). https://doi.org/10.1088/1475-7516/2022/02/010
Hawkins, M.R.S.: Time dilation and quasar variability. Astrophys. J. Lett. 553, L97 (2001). https://doi.org/10.1086/320683
Dai, D.C., Starkman, G.D., Stojkovic, B., Stojkovic, D., Weltman, A.: Using quasars as standard clocks for measuring cosmological redshift. Phys. Rev. Lett. 108, 231302 (2012). https://doi.org/10.1103/PhysRevLett.108.231302
Lee, S.: “Adiabatic expansion for varying speed of light model,” [arXiv:2212.03728 [astro-ph.CO]]